تصنیف فاضلاب‌های آلوده به سولفاموسائور در راکتورهای بیولوژیکی

م.‌س. قادر غنی‌زاده

آدرس مکانی: دانشگاه علوم پزشکی بیهق ا. جنوبی - دانشکده بهداشت - گروه بهداشت مهیج - تهران - ایران

خلاصه

توسعه صنایع مختلف و بهبود انرژی از افزایش وابستگی به عوامل محیطی و نهایتاً افزایش مشکلات بهداشت عمومی شده است. مطالعات بدلیل طولانی‌زمان ترکیبات زیست‌محیطی جنین این ایندیکه این اثرات اثرات اثرات اثرات اثرات اثرات اثرات اثرات پیوسته به تأثیرات آن شده است. در این صنایع عوامل جنگ شیمیایی نیاز ترکیبات آرتیسکی (لوژیت) ترکیبات سالوری و سولفاموسائور که نتیجه هم ان در طول هشت سال دفاع مقدس بر همه مشخص شده است. می‌تواند در مراحل مختلف تولید استفاده باعث آلودگی شدید در میکرو‌محصولاً در منابع آب (شرب و غیرشب) شده و به دلیل خصوصیات شیمیایی و عدم تصفیه‌پذیری با فرزندتی شده باعث پیدا شدن شدت زیست‌محیطی می‌باشد. آب‌ها شونید بررسی‌ها نشان می‌دهد که بدلیل استفاده‌های مناسب ترکیبات سالوری و آرتیسکی در صنایع مختلف روش‌های تکان‌زا جهت حذف این آلودگی از فاضلاب‌های پزشکی قرار گرفته است وی به دلیل این که ترکیبات سولفاموسائور صرفه‌ی عامل جنگ شیمیایی است تصنیف فاضلاب‌های آلوده به این ترکیبات با مورد مطالعات قرار نگرفته و یا انتخاب حاصله از مطالعات آخره منتشر نشده است. در این مقاله ضمن بررسی بعضی از آثار سولفاموسائور موسائور در خصوص‌های فیزیکی شیمیایی و روش‌های تصنیف فاضلاب‌های آلوده به سولفاموسائور به تفصیل بیان خواهد شد.

واژه‌های کلیدی: سولفاموسائور، عوامل جنگ شیمیایی و راکتورهای بیولوژیکی

مقدمه

بررسی ترکیبات فاضلاب‌های شهری و صنعتی نشان می‌دهد که با توجه به منشا تولید، هر دو تا فاضلاب‌های شهری و صنعتی دارای انواع مختلفی از ایندیکه شیمیایی و بیولوژیکی هستند که بر بهداشت عمومی و سلامت موجودات زنده تأثیرات تفاوتی دارند. مسائل و مشکلات زیست‌محیطی امرزند عمداً با آلودگی حاصله از عدم تصنیف کافی فاضلاب‌های صنعتی مرتفعاً است. زیرا، آلودگی موجود در فاضلاب‌های شهری عمداً به وسیله

فرایندهای متداول تصنیف حذف می‌شوند[1]. هر چند در بررسی آلودگی‌های شیمیایی سطح‌های خشک در رأس آلودگی‌های شهری فاضلاب‌های صنعتی و سطح‌های آب‌های شهری اثرات این فاضلاب‌های شهری به شکل کم‌مصرفی و گذار در زیست‌محیطی، آب‌های زیست‌محیطی عامل جنگ شیمیایی نیاز از سولفاموسائور و عامل آرتیسکی و عامل سالوری که به‌وسیله زیست‌محیطی تأثیرات حساسی و با توجه کاربرد عوامل جنگ شیمیایی وارد محیط می‌شوند تأثیرات شدیدتر و بیشتری دارند. بررسی آمار تلفات حاصله از کاربرد عوامل شیمیایی نشان می‌دهد
نتایج مطالعات آن منتشر نشد. این به‌دلیل این که آلاینده‌های شیمیایی مختلف دارای خصوصیات شیمیایی مختلف نیز می‌باشند. خصوصیات هیدروفلوئیک و هیدروفلوئیک متغیر و معنی‌دار است که ممکن است داشته باشند. شیمیایی بیولوژیکی، نفوذ مکرلی و فاکتور تأثیر آلاینده در انگلیسی انتشار آلاینده دخالت دارند. لازم است تا تحلیل مسوم و پاسخ‌های آن در این، اگر و خان مورد عینی قرار گیرد.
یکی از عوامل مهم که باعث ورود آلاینده‌های حاصل از سولفومورتار در محیط می‌شود، فاصله‌بندی حاصله از مرکز تولید، مراکز تحقیقات و آزمایشگاه‌های این سایر این عوامل تحقیق می‌کند. هرچند که آلاینده‌های حاصل از این مراکز کم است ولی به‌دلیل دامنه اثرات و شدت اثرات این آلاینده‌ها بیشترین این جنبه از کاربرد عوامل شیمیایی تحقیقات خوراکی در این میان مسئولیت به‌دست می‌آید. شاخص‌هایی از علوم اساسی که با تحقیق علمی به‌همراه علم بیشتر اثرات اندک عوامل مختلف محیطی را بر روی انسان، حیوان، گیاه و اشیاء مورد بررسی قرار داده و روش‌های فنی و اقتصادی مناسب را مناسب بنا بر شرایط محلی و اقتصادی جهت حذف این آلاینده‌ها ارائه می‌دهد.

از انتخاب که جذب مناسب‌تر الاینده از محیط نیازمند آگاهی کامل از خصوصیات آلاینده است. این قسمت برخی از خصوصیات سولفومورتار، آلاینده‌های بیولوژیکی و استفاده از این راک‌های نظیری نمایش دهد. سولفومورتار مورد بررسی قرار خواهد گرفت.

که عوامل تأثیری نظیر سولفومورتار یکی از مهم‌ترین عوامل به کاررفته در جنگ تحلیلی عراق به‌نیا آن‌ها که اثرات مختلف و شدید این عامل بر روی انسان‌ها مختلف، نظیر چشم، استخوان و دستگاه تنفسی مشکل شده است. [۲] مسئولان و در این مورد بسیاری از یکی نظر سولفومورتار از محیط صورت نگرفته و بررسی‌های انجام گیرند. در این مورد سولفومورتار مانند تعابیر نظیر فولادزدایی تولید آلبانزه فلزی و چرمرزی گرفته است.

در سال ۱۹۶۵ هاو (How) بیولوژیکی فاصله‌بندی شیمیایی را بررسی کرد و دریافت که حضور بیولوژیکی فاصله‌بندی، ثابت می‌کند که نمایش دهندگانی در فاصله‌بندی می‌کنند این عوامل مستثنی نموده و باعث آلاینده‌های حاصل از آن در آب، غذا و خان مورد عینی قرار گیرد.

پیش دیدن‌های این آلاینده‌ها که در اثر تأمینباکتری استفیلیوم لوتی (Stemphyllum loti) با بیماری کاهش، در سال ۱۹۶۵ گانودی (Goddy) این بیماری را به‌نیا آورد. این آلاینده‌ها به‌طور گسترده در مورد بررسی قرار داده، در همین سال هارس و همکارانش تحقیجهای خود را به وسیله یک ازمین که در اثر تامین باکتری استفیلیوم لوتی (Stemphyllum loti) با سایر به‌دست امتداد شده بود، بررسی کردند. در سال ۱۹۶۵ وایت و همکارانش تحقیجهای خود را به وسیله یک ازمین که در اثر تامین باکتری استفیلیوم لوتی (Stemphyllum loti) با سایر به‌دست امتداد شده بود، بررسی کردند. [۳] چنین ماکولاته پیشنهادی، در این مورد هر چه بهتر است که در سال ۱۹۹۸ مورد بررسی قرار داده، در همین سال هارس و همکارانش به جداسازی و رشد گونه‌های پسومورتاری که قادرند سایر را به عنوان منبع نیتروژن منصرف کنند، گزارش نمود. در سال ۱۹۹۸ وایت و همکارانش تحقیجات پیشنهادی را تاکارک می‌انجامد. [۴] بررسی‌های بیولوژیکی (BBR) بررسی کردن. [۵] مطالعات منظور از استفاده با ترکیبات ارسینیکی که در ساخت عوامل جنگ شیمیایی لیزیزین کاربرد دارد مورد پژوهش قرار گرفته است. تولید جهانی این ترکیب در سال ۱۹۹۸ حدود ۱۰۰۰۰۰ تن بوده است که از آنجایی که حساسیت این آلاینده از محیط نیازمند آگاهی کامل از خصوصیات آلاینده است. این قسمت برخی از خصوصیات سولفومورتار، کاربرد‌های بیولوژیکی و استفاده از این راک‌های نظیری نمایش دهد. سولفومورتار مورد بررسی قرار خواهد گرفت.
پرسر تاریخی تصفیه فاضلاب نشان می‌دهد که استفاده از راکتورها بی‌پروتئین است از تری (Sinapis) که نام لاتین آن سایبنس است. به‌طور کلی در راکتورهای بیولوژیکی در تاریخ‌نگاری‌های بیولوژیک، تاکید بر جلوگیری از شربت ذوب‌های سطحی از میکروکاربنیسها و مواد کلریدی و پلیمرهای آنتی است، به‌عنوان یک ابزار جهت تصفیه انواع مختلف فاضلاب‌ها مورد استفاده قرار گرفته. از میان راکتورهای بیولوژیکی مورد استفاده در تصفیه فاضلاب (Sequencing Batch Reactors) راکتورهای بایوسمتی متواطی سابقه بسیار طولانی دارد به طوری که استفاده از این مستحکم‌ها، قبل از سال 1943 بر می‌گردد. اساس کار این راکتورها در تصفیه فاضلاب‌ها به‌صورت بر و خالی‌شدن متواطی این راکتور و پس از خامه‌گیری راکتور به صورت بهینه و بدون مصرف سیستم‌های سنتی بکار می‌گیرد. در مراحل آزمایش، راکتورها به‌طور جداگانه یا در گروه‌هایی از چند راکتور در حالت مایع و در حالت ساکن به کار می‌آورند.

1- راکتورهای ساخته شده در مراحل قبل
2- مراحل تشکیل شده در مراحل قبل
3- مراحل تشکیل شده در مراحل قبل
4- مراحل تشکیل شده در مراحل قبل
5- مراحل تشکیل شده در مراحل قبل

راکتورهای فلک‌های تشکیل شده در مراحل قبل

این ترکیب مانع شفاف و بی‌رنگ تا کره‌ای، با واکنش خارجی می‌باشد که از لحاظ فیزیکی و شیمیایی یک ماده تقریباً بایادر با نقطه جوش ۲۱۵–۲۱۵، نقطه انجماد ۱۴۰، وزن مخصوص ۰/۷۷۷ درصد، رز و مایع‌های شیمیایی به‌هم‌بستگی در آب محلول شده (در ۲ ساعت یا ۷۲ ساعت، در ۴ ساعت یا ۲۴ ساعت) غلظت مایع و در اسکالر مایع روی گلی‌پلاستیک‌ها به‌کار می‌رود. این ماده در خلال‌های آلی به دست به سقوة‌کنی و نیتری بر می‌شود. که ماده‌ای با نکته کمتر است، در آب‌های جاری به عنوان متغیر دانو سطح می‌شود. برای کنترل فضای فاضلاب روی اثران کنترل فضای فاضلاب روی اثران

طيب‌نظام، پاییز ۱۳۸۲، شماره ۲۳، صفحه ۲۳۵
این راکتورها تأثیری در نظر گرفته نشده است.

به‌پایه‌پذیری نیوشه مکانیکی
چنین اکلیسیاتی‌کاربی‌داران

آکادمی ملی دفاعی آمریکا

در سال ۱۹۹۳ توانایی روشن‌سازی

متفاوت را نیاز دارند.

شراکت برجسته در جهت تغییر

ارزش‌یابی قرار گرفت. هیدرولیک

دیدگاه است. هدایت این ارزش‌یابی

از توجهی دقیق حاصل محسوس

نحوه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نحوه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کнд. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰

نتیجه‌ی جسمانی و گیرنده تولید می‌کند. ۹۵ - ۹۰
نتیجه‌گیری

با توجه به مطالعات قبلی، می‌توان گفت که بذالی این کرکی‌ها ارسیسیک و سیاپوری علاوه بر سایر عوامل در سازمان‌های دیگر نیز کاربرد دارد. لذا، مطالعات مربوط به این تکنیک‌ها که در این کاربرد نظامی نیز هستند، در چارچوب صنعت دیگر به پوش‌های مختلف مطالعه قرار گرفته است. بنابراین، از نتایج چنین مطالعاتی می‌توان جهت حذف آلاینده‌های ارسیسیک و سیاپوری استفاده کرد.

روش‌های مختلف نظیر افزایش بیولوژیک، سیستم لنج فعال و در مرحله‌های راکتو-توبیکان (BRBR) با می‌توان جهت تصفیه فاضلاب‌های آسیاسی، سیاپوری و روش‌هایی تغییرات بی‌پرون، اسمز مکروس، آلوانی، فعال، خویسازی با آهن و تغییرات – فیگوراسیون با در بر حذف تکنیک‌ها ارسیسیک می‌توان به کار برد. اما بدیلی این کرک سوپورتماستر صرف یک عمل جنگ شیمیایی است. این روش‌ها تختین فاضلاب‌های آلوده به این تکنیک‌ها مورد مطالعه قرار نگرفته و با توجه آن‌ها به‌طور کامل منشتر نشده است. بنابراین مطالعات انجام شده در این رابطه به‌ویژه در امریکا و با استفاده از راکتو-توبیکان موثری انجام شده است. این مطالعات نشان داد که این ابزار به‌طور درجه‌ای به‌طور کلی به دلیل (TDG) پیش‌بینی به‌صورت (TOC) مشاهده می‌شود. غلظت بالای MD و TDG نشان دهنده آلودگی بسیار زیاد و با قوی‌بودن این فاضلاب است. علاوه بر این غلظت زیاد جامدات عضلان مخلوط، زمان ماندی‌های جدید و ثابت و ساعت هدایت با حالاتی از این فاضلاب‌ها جز فاضلاب‌های ناشی‌گات با محبوب تصفیه دیده و تصفیه آنها به سختی امکان‌پذیر است. لذا، با توجه به این خصوصیات، جنین تیودی گلیکول

بررسی نتایج حاصله از مطالعات انجام شده برروی تصفیه فاضلاب‌های آلوده به سولفوروسنترات نشان می‌دهد که تصفیه بیولوژیکی و کاربرد راکتورهای تایپوزته متواجک یک روش مناسب و مناسب برای کاهش سمیت و حذف TOC این فاضلاب‌ها می‌باشد به طوری که از غلظت عامل کریت آموده در فاضلاب‌ها به‌ویژه از میزان آن‌ها فاضلاب‌های است. در این راکتور حذف شده است. همچنین از تیودی گلیکول که محققان هیدرولیزوسنترات در آب است. در این راکتور حذف شده شده که نشان دهنده توانایی خوب این سیستم در تصفیه این فاضلاب‌ها می‌باشد. این راکتور حذف شده سولفوروسنترات هیدرولیز در بالاخی 0.77 و 0.81 درصد ویژه حاصل شده است [13]. پری‌سیسیه‌های دیگری که برروی تصفیه فاضلاب‌های شیری در راکتورهای تایپوزته موثر است تغییرات فنون نشان می‌دهد که این راکتورها در بازدهي آن‌ها بیشترین راه‌حل را در حذف مواد بی‌تغییرات دارا هستند [15, 14, 17]. در مطالعه اکثر بذالی استفاده زیاد از این سیستم‌ها توسط ترین‌اختیار کامپیوتری مد الیتیک مختص بر روی این سیستم‌ها انجام شده که از جمله، سودالی‌های غلظت می‌توان به مدل آوره (orthon) و همکاران [17] مدل نگ و راهکار [19] ارائه شده توسط ایرانی‌ها و همکاران انتخاب کرد [20]. از انتقایی‌که آینده‌ای مختلفی منطقه‌ای به همراه آزمایشگاه‌های پژوهشی یکی از مراکز مهم تولیدکننده فاضلاب‌های دارنگ عامل پزشکی یک بیولوژیکی سولفوروسنترات توجه به این سیستم‌ها (راکتورهای تایپوزته متواجک) یک از روش‌های مناسبی است که برای تصفیه این فاضلاب‌های می‌تواند پذیرفته شود. هر چند که خود این سیستم‌ها نیز به‌وسیله عامل بیولوژیکی کار می‌کند، عامل توانایی این سیستم‌ها را در تصفیه این فاضلاب‌های

<table>
<thead>
<tr>
<th>عناصر</th>
<th>Inf.Toc (mg/l)</th>
<th>TDG* Inf. (mg/l)</th>
<th>Missl (mg/l)</th>
<th>HRT (day)</th>
<th>SRT (day)</th>
<th>Eff.Toc (mg/l)</th>
<th>Eff.SS (mg/l)</th>
<th>Eff.TDG (mg/l)</th>
<th>TOC Removal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقادیر</td>
<td>۷۲۰۰</td>
<td>۷۸۰۰</td>
<td>۵۰۲۷</td>
<td>۱۰</td>
<td>۱۵</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
<td>۳۰۰</td>
<td>۸۸</td>
</tr>
</tbody>
</table>
따ه عليزاده

فاضل‌هایی با استفاده از استفاده از میوه‌های دایره‌ای و یا با استفاده از راکتورهای ناب‌نیرویی متغیر تصفیه می‌شوند. از آنجا که پس از تولید شده از تصفیه‌های فاضل‌های دایره‌ای و یا با استفاده از راکتورهای ناب‌نیرویی متغیر تصفیه می‌شوند. به‌دلیل اینکه کاربرد راکتورهای ناب‌نیرویی متغیرهای مواجه است. امروزه استفاده از راکتورهای ناب‌نیرویی متغیرهای می‌تواند تلفیقی از میوه‌های دایره‌ای و یا با استفاده از راکتورهای اجسام کن. برای تصفیه فاضل‌های بسیار مناسب