بررسی میزان و مشخصه سر و صدای ماموره‌های تانک بر تیتان و کینوس

غلامحسین پورتقاتی، M.Sc. محمد سالم، M.Sc. محمد ضیا منظم اسماعیلپور، M.Sc.

آدرس مکاتبه: دانشگاه علومپزشکی تهران - (تجهیزات و کاربرد) - کارگاه پیشگیری و وزه‌وریک پزشکی

تحقیقات بهداشت نظامی - نهضت نیروی مسلح

دانشگاه علومپزشکی تهران دانشگاه بهداشت - کارگاه پیشگیری و وزه‌وریک

دانشگاه علومپزشکی تهران - (تجهیزات و کاربرد)

 يعتبر میزان سر و صدای بیش از حد نامناسب با وزنگی آزار دهنده‌ای از سوی سیک و سینگین می‌تواند مشکلات مختلف بهداشتی را از جمله آزارهای دهنده باشد. در این تحقیق سر و صدا مشخصه‌ای هستند که کارگاه‌های دهان و سینه و تیتان (KINUS)

واقعی قابل سنجش مورد نظر شالی‌های تیتان (TITAN) و ماشین کینوس (MSc) برای تاثیر سرعت و اندازه‌سنجی باشد. همچنین تاثیر سل‌که سر و صدا، اندمازگیری، و سوائل حمل و نقل.
جرامت به آسیب‌دیدگان ناشی از سر و صدا بوده است. پرداخت
جرامت کارگران به علت کاهش شنوایی از توسه برای خاطرات
شنوایی تاثیر داشت. این نتایج جرامت کارگران کاهش شنوایی
به علت سرو صدا نمی‌شود. بیماری‌های بیشینه شنوایی یک حادثه نبود و محیط باشد به دست
رفتن در اثر نمایش و فقط بار و سرمایه‌های دیگر تغییر شنوایی
می‌گردد. سپس این برنامه به تدریج به سایر آسیب‌دیدگان نیز
تعمیم داده شد.

نتایج تحقیقات متعدد نشان داده که صدا تهدید
بیماری را در شنوایی تا حدی سلامت عمومی کارگران فراهم
می‌کند. این نتایج تاثیر زیادی در تنظیم استانداردهای جهانی
صدای نشانه‌برد است. بر اساس مقررات جدید برنامه‌های خاطرات
شنوایی مبتنی بر در حالت انجمن پدیده و امتناع شغلی
بر اجرای موفقیت شنوایی از طریق انتداب‌گیری OSHA
ترک صدا محیط کار که کافی نهایت است. [6] لذا هدف این
تحقیق تعیین میزان تراز صدا و انتزاع میزان شنوایی
و NUS می‌باشد که در برادرنده هرچه بزرگ تر است.

1. تغییرات صدا در SHIBEO در شیکاگو C
2. گرفتگری صدا در SHIBEO در شیکاگو D
3. تغییرات صدا در SHIBEO در شیکاگو E
4. تغییرات صدا در SHIBEO در شیکاگو F

(Noise Induced Hearing loss) ایجاد شده است و این به
پیشگیری از آسیب‌های جسمی و روانی و اجتماعی ناشی از
صدا و صدا از هم‌بینی برخورد است.

(Noise Induced Hearing loss) ایجاد شده است و این به
پیشگیری از آسیب‌های جسمی و روانی و اجتماعی ناشی از
صدا و صدا از هم‌بینی برخورد است.

1. تغییرات صدا در SHIBEO در شیکاگو C
2. گرفتگری صدا در SHIBEO در شیکاگو D
3. تغییرات صدا در SHIBEO در شیکاگو E
4. تغییرات صدا در SHIBEO در شیکاگو F

(Noise Induced Hearing loss) ایجاد شده است و این به
پیشگیری از آسیب‌های جسمی و روانی و اجتماعی ناشی از
صدا و صدا از هم‌بینی برخورد است.

1. تغییرات صدا در SHIBEO در شیکاگو C
2. گرفتگری صدا در SHIBEO در شیکاگو D
3. تغییرات صدا در SHIBEO در شیکاگو E
4. تغییرات صدا در SHIBEO در شیکاگو F

(Noise Induced Hearing loss)
2. کالیبراسیون اکوستیکی
1. کالیبراسیون آکوستیکی مدل B & K
2. میکروفون مدل B & K
3. بروش‌ها (پرین)
4. روش‌های پیش‌بینی
5. دستگاه TITAN
6. تپیس و ابزار اندازه‌گیری

<table>
<thead>
<tr>
<th>dB(A)</th>
<th>dB(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.1</td>
<td>76.2</td>
</tr>
<tr>
<td>70.2</td>
<td>79.3</td>
</tr>
<tr>
<td>72.1</td>
<td>82.2</td>
</tr>
</tbody>
</table>

جدول 1. مقایسه صدا در دستگاه TITAN و KYNUS

مقدمه
کاربرد

احاله‌ها و وسایل

آموزش و پژوهش

ب. در حال حرکت رو به بالا با سرعت کمتر از 5 کیلومتر در مسیر با شیب تقاطع 5 تا 6 درجه (دور موتور 1300).
مشخصات و شرایط انجام‌گیری. انجام‌گیری در فاصله حدود 15 کیلومتری شهر تهران انجام گرفت. سطح جاده (مسیر)

جدول ۲. توزیع میانگین و مشخصات تردد صدا موجود TITAN در داخل کابین با سرعتها و حالات مختلف حرکت رو به بالا با تابع تقریبی حدود ۵ تا ۵۰ درجه.

<table>
<thead>
<tr>
<th>سرعت (کمتر از ۵ کیلومتر)</th>
<th>سرعت (بین ۵ تا ۱۰ کیلومتر)</th>
<th>سرعت (بین ۱۰ تا ۱۵ کیلومتر)</th>
<th>سرعت (بین ۱۵ تا ۲۰ کیلومتر)</th>
<th>سرعت (بین ۲۰ تا ۲۵ کیلومتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۸/۳</td>
<td>۷۶/۳</td>
<td>۷۴/۳</td>
<td>۷۲/۳</td>
<td>۷۰/۳</td>
</tr>
<tr>
<td>۳۹/۲</td>
<td>۳۷/۲</td>
<td>۳۵/۲</td>
<td>۳۳/۲</td>
<td>۳۱/۲</td>
</tr>
<tr>
<td>۳۱/۲</td>
<td>۳۳/۲</td>
<td>۳۵/۲</td>
<td>۳۷/۲</td>
<td>۳۹/۲</td>
</tr>
<tr>
<td>۳۷/۲</td>
<td>۳۹/۲</td>
<td>۴۱/۲</td>
<td>۴۳/۲</td>
<td>۴۵/۲</td>
</tr>
<tr>
<td>۴۱/۲</td>
<td>۴۳/۲</td>
<td>۴۵/۲</td>
<td>۴۷/۲</td>
<td>۴۹/۲</td>
</tr>
<tr>
<td>۴۵/۲</td>
<td>۴۷/۲</td>
<td>۴۹/۲</td>
<td>۵۱/۲</td>
<td>۵۳/۲</td>
</tr>
<tr>
<td>۴۹/۲</td>
<td>۵۱/۲</td>
<td>۵۳/۲</td>
<td>۵۵/۲</td>
<td>۵۷/۲</td>
</tr>
<tr>
<td>۵۳/۲</td>
<td>۵۵/۲</td>
<td>۵۷/۲</td>
<td>۵۹/۲</td>
<td>۶۱/۲</td>
</tr>
</tbody>
</table>

نتایج اندازه‌گیری

نتایج اندازه‌گیری‌ها در حالت‌های مختلف و برای هر نوع ماشین در جدول-۲ در کرده‌بوده است. همچنین خلاصه‌نگر نتایج اندازه‌گیری‌ها را می‌توان در نمودارهای ۱ و ۲ مشاهده نمود.

بحث و نتیجه‌گیری

از جدول شماره ۱ می‌توان دریافت کرد که اندازه‌های صدا تولیدی دستگاه KINUS در فاصله ۳۰ سانتی‌متری ۲۸/۱ کیلووات.
مشخص است که پیشترین ترزاها در فرکانس ۲۵۰ و ۳۰۰ هرتز در حالی شیشه یا به شیشه و همچنین پیشترین ترزاها در فرکانس ۲۵۰ در حالی شیشه بالا می‌باشد. همچنین از جدول فوق می‌توان دریافت که این فواصل تردیدی در حدود کمتر از یک متر (این نتایج) با توجه به نوع و میزان انقباض هارمونیک، ترکیب صدا به هدفونه است که این غلبه در طی فرکانس‌های مکانیکی است و این جهت لازم است.

مورد نظر زیاد باشد (A) از جدول فوق می‌توان دریافت که اندیس هارمونیک صدا تولید دستگاه TITAN در فاصله 30 دسیمتری 7/9 دسی بل و در فاصله 2 متری 8/9 دسی بل می‌باشد. همان‌گونه که مشخص است، بالا یوند انديس هارمونیک نشان دهنده ترکیب فرانکاس پایین و تأثیر جذب محتوی پایین در باشد. اگرچه ۲ و ۳ را از دیدگاه اختلاف بررسی نامیم کمال مشخص است نوع صدائی دستگاه TITAN با انقباض هارمونیک بالاتر رسانی می‌کند.

دارد.

ترزا صدا در فاصله 2 متری از دستگاه KYNUS در شبکه A و در دستگاه KYNUS 6/7 دسی بل در شبکه C یا باز آموز انجام شده (T-TEST) مشخص گردید که این اختلاف را از نظر آماری معنی دار است. به دستهای مشخصات ترزا صدا می‌توان دریافت که دامنه اختلاف ترزا بین ایستاده (روشن) و سرعت کم در Maischin تاکم متری سر به کشور KYNUS از همان نمودار هسته‌های مناسب است که پیشترین در KYNUS اختلاف این ایستاده و کار درجا ترزا KYNUS صدای بالاتری درد از این چنین می‌توان دریافت که میزان ترزا صدایی دستگاه KYNUS با همین ایستاده و کار درجا ترزا KYNUS ۴۵۰ و ۵۰۰ فرکانس‌های مکانیکی) بالاترین مقدار داشته و در حالی شیشه بالا این وضعیت به فرکانس ۱۴۵ متعلق گردیده است به عبارت دیگر تأثیر شیشه در کاهش آزارسای قابل توجه بوده است. همچنین می‌توان دریافت که در این دستگاه در حالی است، شیشه بالا و منعوت A روش قدر است ترزا صدا از ۲۳ دسی بل به ۳۶/۷ دسی بل در شبکه A و از ۷۸/۱ به ۸۱ دسی بل در شبکه C بالا می‌باشد. اگرچه در شبکه A تقریبا ۸/۸ دسی بل و در شبکه C دسی بل بوده است.

از جدول شماره ۳ که اختلال که یا شرایط دستگاه TITAN در داخل کانی دستگاه KYNUS
References

کینوس (KYNUS) ارجح می‌باشد. لذا ارجحیت ماسین تیتان به مرکز مربوطه اعلام گردد.

278

180

References

8. قنیززاده علمداری – زین العابدين ۶۳۷۶. انداره کری تاز صدا در کارگران شبیه‌گستری تهران. ارزیابی شناختی کارگران در معرض و آنالیز. روش‌های کنترل پایان نامه کارشناسی ارشد. دانشگاه تربیت مدرس.