Chemical L., Mustard Gas. 


Abbas F. Report of the specialists appointed by the Secretary-General of the United Nations to investigate allegations by the Islamic Republic of Iran concerning the use of chemical weapons. Arch Belg. 1984;Suppl: p302-10.


Black RM, Brewster K, Clarke RJ, et al. Biological fate of sulfur mustard, 1,1'dithiois(2-chloroethane)


* Darre E. [Recent perspectives in the protection of the skin from mustard gas] Ugeskr Laeger (Denmark), Oct 3 1988, 150(40) p2389-91.


* Dowlati A, Piroier GE, Dowlati Y. Epidermal hyperplasia with or without atopia in patients exposed to mustard gas [letter; comment] Arch Dermatol (United States), Feb 1993, 129(2) p245.


* Emad A, Rezaian GR. The diversity of the effects of sulfur mustard gas inhalation on respiratory system 10 years after a single, heavy exposure: analysis of 197 cases. Chest (United States), Sep 1997, 112(3) p734-8.


* Freitag L, Firuskin N, Stamatidis G, et al. The role of bronchography in pulmonary complications due to

dermal toxicity by bis(chloroethyl)sulfide. Effect on secondary epidermatization. Cell Biol Toxicol

Gluud B, Dahl H, Vangsged P, Norn MS. Mustard

mustard contaminated skin defects in the euthymic
hairless guinea pig. Drug Chem Toxicol (United
States), Nov 1994, 17(4) p499-527.

Gold MB, Scharf BA. Hematological profile of the
euthymic hairless guinea pig following sulfur mustard
vesicant exposure. J Appl Toxicol (England), Nov-Dec

Gray PJ. Sulphur mustards inhibit binding of
transcription factor AP2 in vitro. Nucleic Acids Res
(England), Nov 1995, 23(21) p4378-82.

Gross CL, Giles KC, Smith WJ. Loxothialolidine-4-
carboxylate pretreatment of isolated human peripheral
blood lymphocytes reduces sulfur mustard cytotoxicity.
Cell Biol Toxicol (Netherlands), Mar 1997, 13(3):
p67-73.

Biochemical manipulation of intracellular glutathione
levels influences cytotoxicity to isolated human
lymphocytes by sulfur mustard. Cell Biol Toxicol
(Netherlands), Jul-Sep 1993, 9(3) p259-67.

Habraken Y, Ludsin DB. Release of chloroethyl ethyl
sulfide-modified DNA bases by bacterial 3-methyl-
adenine-DNA glycosylases I and II. Carcinogenesis
(United States), Mar 1989, 10(3) p89-92.

Hambrook JL, Harrison JM, Howells DJ, et al.
Biological fate of sulfur mustard (1,1'-thio-bis(2-
chloroethane)): urinary and faecal excretion of 35S by
rat after injection or cutaneous application of 35S-
labelled sulfur mustard. Xenobiotica (England), Jan
1992, 22(1) p65-75.

Hambrook JL, Howells DJ, Schock CB. Biological fate
of sulfur mustard (1,1'-thio-bis(2-chloroethane)):
uptake, distribution and retention of 35S in skin and in
blood after cutaneous application of 35S-sulfur
mustard in rat and comparison with human blood in
vitro. Xenobiotica (England), May 1993, 23(5) p537-
61.

Hay A. Effects on health of mustard gas [letter].

Heyndrickx A, Cordonnier J, De Boek A.
Chromatographic procedures for the toxicochemical
determination of bis (2-chloroethyl) sulfide (mustard
gas, yperite) in environmental and human biological

Heyndrickx A, Sookvanichsilp N, Van den Heede M.
Detection of trichothecene mycotoxins (yellow rain) in
blood, urine and faeces of Iranian soldiers treated as

Heyndrickx A, Van Steenberge M. Methemoglobinemia in patients attacked by chemical and
microbiological warfare agents. Arch Belg.
1984;Suppl:69-73.

Heyndrickx A, De Puydt H, Cordonnier J.
Comparative study of two different field tests for the
detection of yperite in the atmosphere, applied on
biological samples of gased soldiers. Arch Belg.

Heyndrickx A, Heyndrickx B. Treatment of Iranian
soldiers attacked by chemical and microbiological war

Heyndrickx A, Heyndrickx B. Comparison of the
toxicochemical investigations in man in Southeast Asia,
Afghanistan and Iran, concerning gas warfare.
Arch Belg. 1984;Suppl:426-34.

Hochmeister M, Vycudilik W. [Morpho-toxicologic
findings following war gas effect (S-Lost)] Beitr

Hooyssenhuw FW, Kientz CE, Brinkman UA.
Determination of the sulfur mustard hydrolysis product
thiodiglycol by microcolumn liquid chromatography
coupled on-line with sulfur flame photometric detection
using large-volume injections and peak compression.
J Chromatogr A (Netherlands), Jul 23 1999, 849(2)
p433-44.

effects induced by bis-chloroethyl sulphide (sulphur
mustard): [Ca2+]i rise and time-dependent inhibition of
B77 fibroblast serum response. J Appl Toxicol (United
States), May-Jun 1993, 13(3) p161-8.


• Klehr NW. [Late manifestations in former mustard gas workers with special reference to cutaneous findings]. Z Hautkr. 1984 Sep;59(17):1164-1, 1167-70. German.


• Kulling P. [New antidotes for poisoning and mustard gas exposure are being introduced]. Lakartidningen (Sweden), Feb 19 1992, 89(8): p548.


Li Q, Laval J, Ludham DB. Fpg protein releases a ring-opened N-7 guanine adduct from DNA that has been modified by sulfur mustard. Carcinogenesis (England), May 1997, 18(5): p1025-8.


Logan TP, Millard CB, Shatz M, et al. Cutaneous uptake of 14C-HD vapor by the hairless guinea pig.

Lohs K [Sulfur-lact (2,2'-dichlorodithiole-sulfide)-still of current toxicologic importance]. Z Arzt Fortbild (Jena) (Germany), Aug 12 1993, 87(8) p659-64.


Sandelowsky I, Simon GA, Bel P, et al. N1-(2-hydroxyethylthioethyl)-4-methyl imidazole (4-met-1-


† Wils ER, Hulst AG, van Laar J Analysis of thioglycol in urine of victims of an alleged attack with


Zlotogorski A, Goldernshsk M, Shafran A A model for quantitative measurement of sulfur mustard skin lesions in the rabbit ear. Toxicology (Ireland), Jun 27 1997, 120(2) p105-10.