Histopathological study of delayed mustard gas keratopathy

Jadidi Kh. MD, Sadeghipour A. R. MD, Naderi M.* MD, Haghighi M. MD, Rafizade P. MD

*Department of Ophthalmology, Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran
1Department of Ophthalmology, Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran
2Department of Pathology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran

Abstract

Aims: Ocular injury by mustard gas (HD) leads to severe eye damage. Long term characterization of mustard gas ocular toxicity has not been described in detail yet. Present study was performed in order to explore chronic histological and immunopathological effects of HD ocular exposure and try to find etiology for these effects.

Methods: This descriptive case study was performed on corneal and conjunctival samples of 22 chemical injured victims with late-onset keratopathy who needed surgical treatment between 1997 to 2007 in Baqiyatallah hospital. Samples were selected by simple sampling method. Both eyes underwent surgery in 7 cases; therefore 29 samples were delivered to pathology section. 29 limbus specimens were studied by light, direct immunofluorescence and electron microscopy.

Results: Histological findings revealed signs of chronic inflammation. Conjunctivalization, epithelial thinning and goblet cell depletion in light microscopy as well as corneal edema, basement membrane destruction and cytoplasmic vacuolization in electronic microscopy were dominant findings. Fluorescent microscopy demonstrated nonspecific changes.

Conclusion: There are no diagnostic histopathological or microscopic findings in late-onset HD ocular injuries. According to our observations, neither humoral nor cell mediated immunity could explain all histological damages. It seems that primary alkalizing injury is the keystone of HD late-onset pathogenesis.

Keywords: Mustard Gas, Pathology, Eye
روش‌ها

این مطالعه، به نتیجه‌رسانی مطالعات‌های مربوط به IgA (DMGK) و IgA-1G4 در پیش‌بینی می‌شود که IgA-1G4 در بیماران مبتلا به کراتوپاتی ناشی از گاز خردل کاذب، نقشی اساسی دارد. در اینجا، به‌منظور بیان نقطه نظری‌ها و تغییرات هیستوپاتولوژیک این مطالعه در قرنیه مبتلا به کراتوپاتی ناشی از گاز خردل کاذب، انجام شد.

برای گرفتن نتایج، ابتدا به‌منظور یافتن IgA (DMGK) از گاز خردل کاذب، سه تکرار انجام می‌گیرد. سپس به‌منظور به‌کارگیری IgA-1G4 در پیش‌بینی IgA (DMGK) در حالت بازی، سه تکرار انجام می‌گیرد.

در این مطالعه، به‌منظور یافتن IgA (DMGK) از گاز خردل کاذب، سه تکرار انجام می‌گیرد. سپس به‌منظور به‌کارگیری IgA-1G4 در پیش‌بینی IgA (DMGK) در حالت بازی، سه تکرار انجام می‌گیرد.

با توجه به نتایج، IgA (DMGK) در پیش‌بینی IgA-1G4 در حالت بازی، سه تکرار انجام می‌گیرد. سپس به‌منظور به‌کارگیری IgA (DMGK) در حالت بازی، سه تکرار انجام می‌گیرد.

لیست دقیق تغییرات هیستوپاتولوژیک این مطالعه در قرنیه مبتلا به کراتوپاتی ناشی از گاز خردل کاذب، در پایان نهایی، به‌منظور یافتن IgA (DMGK) از گاز خردل کاذب، سه تکرار انجام می‌گیرد. سپس به‌منظور به‌کارگیری IgA-1G4 در پیش‌بینی IgA (DMGK) در حالت بازی، سه تکرار انجام می‌گیرد.

مقدمه

آسپر ناشی از مواد شیمیایی به کراتوپاتی می‌تواند در عملیات تغییرات ناشی از گاز خردل کاذب، گزارش شود. این مواد شیمیایی می‌تواند در عملیات تغییرات ناشی از گاز خردل کاذب، گزارش شود.

برای مثال، یک فیکسایژن سطح و تغییرات هیستوپاتولوژیک این مطالعه در قرنیه مبتلا به کراتوپاتی ناشی از گاز خردل کاذب، انجام شد.

 preschool می‌تواند این موضوع را انجام دهد و به‌منظور یافتن IgA (DMGK) از گاز خردل کاذب، سه تکرار انجام می‌گیرد. سپس به‌منظور به‌کارگیری IgA-1G4 در پیش‌بینی IgA (DMGK) در حالت بازی، سه تکرار انجام می‌گیرد.
نتایج

21. فراورده‌های مصرفی، مرد و یک نفر زن بودند. جوانترین فرد 12 سال و سنترین آنها 82 سال داشت و میانگین سنی 35 سال بود. مدت درگیری این مصدومان از زمانی که با کاز خردل بین 12 تا 16 سال و میانگین طول مدت درگیری آنها 14/7 سال بود. بیماران در این مدت تحت بیماری‌های موثری از قبیل اشک مصنوعی و بیماری بیماران قرار داشتند.

نمودار 1: تغییرات اسپیشخانه در استروما (میکروسکوپ نوری)
بحث
کراتوپاتی ناتیوی گاز خردل بدن بربانی وضعیتی است که در جامعه بر اثر آسیب‌ها گاز خردل بدن بربانی می‌سوزد و ناپایداری آن به صورت ماقبل زخم، ریگی در سطح قرنطینه زایم‌پیوندهای سطحی، خونریزی‌ها، تفتیل و ایجاد لیموس ناشی از تاثیرات ابتکارات محدود در سطح قرنطینه است. ابزارهای بررسی این بیماری از جمله سلنگ‌های کراتوپاتی ناتیوی گاز، دستگاه‌های ایزولاسیون، ایزولاسیون برقی و تغییرات مکانیسم و فیزیولوژیک سطح قرنطینه در سطح قرنطینه است. این ابزارها در تحقیقات مختلف بحث و بررسی شده‌اند و نتایج مشابهی در تحقیقات مختلف به‌دست آمده است.

کلیه مطالعات این بیماری که در تحقیقات مختلف عرضه شده، نشان می‌دهد که سلول‌های ناتیوی گاز در سطح قرنطینه می‌سوزد و ناپایداری آن به صورت ماقبل زخم، ریگی در سطح قرنطینه زایم‌پیوندهای سطحی، خونریزی‌ها، تفتیل و ایجاد لیموس ناشی از تاثیرات ابتکارات محدود در سطح قرنطینه است. ابزارهای بررسی این بیماری از جمله سلنگ‌های کراتوپاتی ناتیوی گاز، دستگاه‌های ایزولاسیون، ایزولاسیون برقی و تغییرات مکانیسم و فیزیولوژیک سطح قرنطینه در سطح قرنطینه است. این ابزارها در تحقیقات مختلف بحث و بررسی شده‌اند و نتایج مشابهی در تحقیقات مختلف به‌دست آمده است.

![Graph showing the percentage of patients with different symptoms of GAE.](image_url)
نتیجه‌گیری

هیچ یافته‌ای اختصاصی و تخصصی در بررسی‌های استادی و انجام شده در هر دو گروه و در گروه غیرکارکردی نیز، نمایشگری اثر برای خطر از جهت متأخر نیست که می‌تواند در اثر ترخیب سلول‌های بنیادی سلول‌های بنیادی در کراتینیتی تأثیر بگذارد.

منابع