توصیف مقایسه‌ی تأثیر سلنیوم و ویتامین E بر زیر جمعیت‌های لنووسیتی T-2

چکیده
هدف: مسومیت T-2 باعث تغییر نسبت طبیعی ترک محسوبی موش می‌شود و مواد آنتی آسیدان آتی روند تغییر را تحت تأثیر قرار دهد. ۹ هدیع این مطالعه مقایسه تأثیر آنتی آسیدان مورفی سلنیوم و ویتامین E بر زیر جمعیتی ایجاد شده در لنووسیتی T-2 مسومیت با سرم T-2 به دنبال مس مورد بررسی قرار گرفت.

مواد و روش کار: ۹ک دوز سرم T-2 به مقدار ۲ میکروگرم بر کیلوگرم به که گروه ۱ تا ۴۴ روز موش تزریق و در زمان‌های مختلف پس از تزریق با استفاده از روش فلوسیتومتری لنووسیتی‌های خون محسوبی آنها شماره سد. سیس سرم T-2، سولفات سلنیوم با ویتامین E در دو حالت هم‌زمان و غیرهم‌زمان (به فاصله ۷۲ ساعت از سرم T-2 به چهارگروه دی راه انداخته و بین تزریق پس از ۷۲ ساعت نسبت برخی از زیر جمعیت‌های لنووسیتی در نمونه‌های خون محسوبی نرخ تقریبی قرار گرفت. مورد بررسی قرار گرفت.

نتایج: توزیع طبیعی زیر جمعیت‌های لنووسیتی مورد مطالعه همگی تحت تأثیر سرم T-2 قرار گرفت ترک بطوری که پس از دریافت دو حالت کشته آن سرم زیر جمعیت‌های CD8، CD19، CD4 از افزایش CD8 کاهش و زیرجمعیت CD4 تا ۴۴ ساعت درمان با دریافت T-2 و ۲ حالت کاهش محسوبی بر روند کاهش این زیر جمعیتی تابیرگیران نبود CD8 و CD4 تک نمونه آماده اما ویتامین E در نمونه‌ی کاهشی و تا حدی در نمونه‌ی کاهشی نمی‌تواند این زیر جمعیتی تابیرگیران نبود. سلنیوم وقتی هم‌زمان با سرم تزریق شد از افزایش زیر جمعیت CD4 بطور کامل جلوگیری نمود اما ویتامین E در این حالت کاهشی نداشت. وقتی این دو حالت آسیدان ۷۲ ساعت قبل از تزریق سلنیوم درمان شدند هیچکدام روند پایدار آفتاب این زیر جمعیتی را تحت تأثیر قرار ندادند. دریافت سلنیوم در هر دو حالت از جهت همگون مسومیت در حالی که این اثر بر این عارضه کاهش زیرجمعیت CD8 تک نمونه‌ی کاهشی نمی‌تواند این نرخ T-2 افزایش نماید.
نتیجه گیری: کارایی سلنیوم و ویتامین E در رفع عوارض جمینی لنفوئیته بر حسب زمان افتخاده و نیز نوع زیرجمعیت آسبید دیگر متقاوت است و به نظر می‌رسد تزریق سلنیوم بلاعابه پس از مسمومیت با سم T-2 نسبت به دریافت آن قبل از مسمومیت تراها در فراهم می‌کند ما سهمیه و ویتامین E و همچنین استخراج از سم قبل از مسمومیت دریافت شد.

واژگان کلیدی: سلنیوم، ویتامین E، سم T-2، لنفوئیت، ماکائوتکسین

مقدمه
تراکوتکسین‌ها (Trichothecenes) گروهی از سمی قارچی هستند که بوشندماره‌های مختلف از جمله جنس‌های فورماتیوم (Fusarium)، بافت‌پوست قارچی، (Fusarium) از در مجموعات کشاورزی و فرآورده‌های آنها تولید و انسان و جویان معرض را در معرض مسمومیت قرار می‌دهند. سم T-2 قوی ترین عضو خانواده تراکوتکسین‌ها محسوب می‌شود (1) این سم سنگین‌تر از طریق خوراکی، استنشاقی، و پوستی وارد می‌شود و چون سمی‌ساز و بر حسب راه ورود و مقدار دریافت عوارض مختلف از جمله اسهال بیشتر، اسهال، هیپوهزی، استفراغ، اختلالات عصبی، تضعیف مغز استخوان و اختلالات سیستم ایمنی ایجاد می‌نماید این سم که در به عواضش شدید و متعدد به عنوان یکی از ابزارهای جنگ بیولوژیکی نیز به حساب می‌آید (2).

مطالعه قبلی ما نشان داده بود که سم T-2 و فرامی در صورت خیزش کششی به افت زیادی شود باعث تغییر در تنش عضلانی لنفوئیتیات فورامین سیستم الکتریکی از آن انکر می‌باشد [13] هدف از مطالعه حاضر آن است تاثیر مواد انتی‌اکسیدان مخصوص سیستم الکتریکی این سم T-2 در لنفوئیتیات فورامین ایجاد می‌شود را در شرایط درون تی مورد ملاحظه قرار دهد.

مواد و روش کار
محدودیت: موسه‌های سری‌های مربوط به وزن 250 گرم و سن 6-8 ماه
فلوسایتومنتری: خون محیطی از گوشی چشم گروه‌های موش تست و شاهد در لوله حاوی ضد انعکاد جمع‌آوری و برای نشان‌داردن ترکیب جرم‌های لنفوسیتی، ۳۰ دقیقه با انتی‌بادی‌های FITC (شرکت سرولک) اکتشف می‌گردد. سپس حجم معنی‌زایی از نمونه خون به دسته‌گاه فلوسایتومنتر تزیب و لنفوسیتهای CD19، CD4، CD8، و آن شمارش شد.

روش آماری: اطلاعات بدست آمده با نرم افزار INSTATA پرای متنی دار بودن اختلافات در نظر گرفته شد.

وجود اختلاف بین گروه‌های موش با انالیز واریانس یک طرفه بررسی گردید و از آنون نسبت بررسی اختلاف بین درصد زیر جمعیت‌های لنفوسیتی گروه‌های مختلف موش استفاده شد.

نمودار ۱: توزیع لنفوسیتهای CD19+ در خون محیطی موش پس از دریافت صفاتی توسکین-۲، سلنیوم، وا و تیامین. ترکیب سلنیوم: ۲mg/kg T-۲ و Tوسکین-۲ ۱۴.۳mg/kg T-۲ و Tوسکین-۲ ۳mg/kg T-۲ و Tوسکین-۲ ۲mg/kg T-۲ و Tوسکین-۲ به تنها (بر ترنبیب سن توسکین-۲ ۲۰.۲)، همزمان با Tوسکین-۲ (ستون های ۵ و ۶) و یا ۲۴ ساعت قبل از توسکین (ستون های ۷ و ۸) انجام شده است.
نتایج
نمودارهای ۱، ۲ و ۳ به ترتیب دریافت ویتامین E و سلنیوم بر نسبت لنفوسیت‌های CD19، CD4+ و CD8+ را نشان می‌دهد.

نتایج نشان داد که دریافت سمن T-2 جمعیت CD19 را کاهش داد است. اما سلنیوم و ویتامین E به تنهایی نتایجی بر این جمعیت نداشتند. سلنیوم در هر دو حالت تزریق هم‌مان و یا به فاصله ۲۴ ساعت از سم از کاهش جمعیت CD19 جلوگیری کرد است. اما ویتامین E در هر دو حالت اثر کاهش محسوسی نداشتند. دریافت T-2 جمعیت CD8+ را کاهش داد اما در موارد سمن T-2، جمعیت CD8+ را نشان داد که دریافت T-2 باعث کاهش می‌شد.

ماده دریافتی
نمودار ۲: توزیع لنفوسیت‌های CD4+ در خون محیطی موس پس از دریافت صافای توكسین T-2، سلنیوم، ویتامین E. تزریق سلنیوم در دوگانه، ویتامین E با تکرار سمن های 2mg/kg، 14.3mg/kg و T-2 با تکرار سمن های 3mg/kg، با تکرار سمن های 4mg/kg و T-2 و 6mg/kg و T-2 با تکرار این مقدار در شرایط خشک و ۳۴ ساعت قبل از تکرار سمن های 7 و 8 انجام شده است.
نمودار 3: توزیع نفوذیت‌های +CD8+ در خون محیطی موش پس از دریافت صاف‌نگاری توکسین-2، سلنیوم، واکسین و تریزیک سلنیوم: به تنهایی (از چپ به ترتیب سرم‌های ۱۵، ۱۵.۲ و ۱۵.۲ گیگا‌سیلوپریک تهیه شده‌است.)

(ستونهای ۷ و ۸) ساعت قبل از توکسین (ستونهای ۷ و ۸) انجام شده است.

بحث

پیش‌نگاری از سولول‌های بدن از جمله سولول‌های سیستم ایمنی تحت تاثیر سم-۲ قرار می‌گیرند. بنابراین که پس از مسمومیت با این سم برخی از زیرجمعیت‌های لفوسیتی کاهش و برخی افزایش می‌یابند (۱۵). لفوسیت‌ها نقش اساسی در تنظیم سیستم ایمنی دارند و هرگونه تغییر در نسبی طبیعی این سلول‌ها می‌تواند تعادل دستگاه دفاعی بدن را دچار اختلال نماید. پایان به عوارض
CD4+ and Z-june microscopy. CD4+ and CD8+ T-cell populations were analyzed using flow cytometry.

Results

The results showed that exposure to T-2 toxin caused significant changes in the CD4+ and CD8+ T-cell populations. The proportion of CD4+ T-cells increased while the proportion of CD8+ T-cells decreased.

Discussion

These findings suggest that T-2 toxin may induce immunomodulatory effects on the immune system. Further research is needed to understand the mechanisms behind these changes.

Conclusion

T-2 toxin is a mycotoxin that affects the immune system. It is important to monitor and understand the potential impacts of T-2 toxin exposure on human health.

References

3- Parent-Massin D, Parchment R. Hematotoxicity of mycotoxins, Revue de médecine vétérinaire 149 1998; 591–598.

8- Vila B, Jaradat ZW, Marquardt RR, Frohlich AA. Effect of T-2 toxin on in vivo lipid peroxidation and vitamin E status in mice, Food and Chemical Toxicology 2002; 40: 479-486.

14- خسرو شاهین ن, ریاضی پور م, سپیلیان ج, عرف پور م, مطالعه نقش ویتامین E در کاهش اثرات سمی T-2 بر جمعیت لفومیتوسی با استفاده از روش فلوروسکوپی. مجله علوم پایه دانشگاه الزهرا(شیراز) 1381, جلد 18, شماره 2, صفحات 43-6.

17- ممیزانی ای. مطالعه اثر سلیم به پیشگیری از هموزوی ناشی از T-2 توكسین. دانشگاه بهبود دهنده علوم پزشکی تهران. پایان‌نامه کارشناسی ارشد. 1388.