بررسی اثر محافظتی هگزامتیل تنترمین بر رده سلولی سولفورموستارد

M.Sc.**1 - مهدي صابری۱ Ph.D.*1 - علي ممان زارعی۱
Ph.D.*1 - نیا کلمنش۱ M.Sc.*1 - الیاپرزاژت۱
Ph.D.*1 - حسین ایمانی۱ Ph.D.*1 - غلامرضا پورخیریزاده۱

آدرس مکاتبه: دانشگاه علوم پزشکی قم‌... دانشکده پزشکی - گروه فارماکولوژی و سمی‌شناسی و مرکز محافظات آسیب‌های شیمیایی - تهران - ایران

** دانشگاه علوم پزشکی قم‌... دانشکده پزشکی - گروه بیولوژی و مرکز محافظات آسیب‌های شیمیایی - تهران - ایران
*** دانشگاه علوم پزشکی قم‌... دانشکده پزشکی - گروه آنتی‌بیوتیک - تهران - ایران

تاريخ اعلام وصول: 1388/8/22
تاريخ دریافت مقاله اصلاح شده: 1385/3/11
تاریخ اعلام قبول مقاله: 1385/3/11

خلاصه

مقدمه: سولفورموستارد (HD) به عنوان یک سلاح شیمیایی برای خطرات همبسته مورد استفاده بوده است. علیرغم تحفیظات گسترده‌ی این دهه هنوز راکد مانندی برای پیشگیری یا درمان عوارض HD یافته‌نشده است.

مواد و روش کار: در این مطالعه رده سلولی HD سولفورموستارد (HF2FF) به عنوان مدلی از سلول‌های فیبرولاست پوست انسان برای بررسی اثرات سمی HD و اثر محافظتی هگزامت در درمان، روش دو جامعه‌ای (HMT) و روش آزمایشی دو ابزار کنترل (Neutral Rd = NR و قرمز خاکی = Gentiana violet = GV) مورد استفاده قرار گرفت.

روش‌های رنگآمیزی و بیولوژی‌سنجی (Viability) میزان سلول‌های زنده (CD) به عنوان میزان ارزیابی با یک هرگز شدید توانایی اثر محافظتی در HMT بیشتر گزارش شده است. در حالی که نتایج متفاوتی از اثر خشونت به Lethal concentration (LC) یافت نشد.

نتایج: استفاده از غلظت‌های مختلف HD نشان داد با افزایش غلظت غلظت به شیب از ۳۰ میکرو‌مولول اثرات سمی تنش داد با افزایش غلظت HD به شدت کاهش می‌یابد. غلظت ۱۲۰۰ میکرو‌مولول (پرسپتیو) کاهش همبسته سلولی هنوز به میزان ۴۰ سبب کاهش سلولی زنده به میزان ۵۰ درصد با کاهش پس از یکساعت گردید. در حالی که غلظت ۳۰ میکرو‌مولول حتی پس از یکساعت در میزان سلول‌های زنده فقط ۱۸ درصد کاهش ایجاد نمود. با استفاده از منحنی برای حوادث غلظت مناسب سلولی در محیط HD کشت برای ایجاد ۵直流 مرک سلولی (LC50) میزان ۱۸۰ میکرو‌مولول ۱۵ دقیقه تعیین گردید.

کشت مرک سلولی ۱۳۰ میکرو‌مولول (پرسپتیو) به میزان ۱۳۰ میکرو‌مولول همبسته بیشتر از سلول‌های زنده اثر ممکنی نداشت. بیشتر دریافت قبل از HMT با غلظت ۱۰ میکرو‌مولول به‌عنوان بر اثر سلول‌های زنده اثر ممکنی نداشت. همچنین کشت مرک سلولی با مصرف HD اثر بیشتر با مصرف HD و HMT کاهش می‌فرستم ۱۲۰ سبب کاهش بیشتر با مصرف HD مصرف پس از آلودگی با HD اثر برجسته‌ای در بیشتر اثر مصرف HD مصرف پس از آلودگی با HD اثر برجسته‌ای در بیشتر
بحث: نتایج فوق نشان می‌دهد که هم‌تودان سلول‌های فوق را در مقابل آرتسی سیمی HD می‌تواند سرعت دوام یافته و HD محلول باشد. صورت پیش از تماس HD با بایاد در زمان آلوگوی با HD موجود باشد. مطالعات درون بین (In-vivo) برای تعیین اثر خود و تاثیر در HMT بیشگیری از مرگ و بی‌سیلول نخواهد داشت. مطالعات درون بین تتی (In-vivo) برای تعیین اثر خود و تاثیر در HMT در پیش گیری از سرعت ناشی از خردل پیشنهاد می‌گردد. مطالعه فوق نشان داد سلول‌های HD و دیگر مواد آسیب قسمتی به پوست و دیگر سایر ترکیبات دارای دیگر کارایی بالقوه درمانی قبل از آرتسی سیمی درون بین می‌باشد.

واژه‌های کلیدی: سولفور موستارد، سلول‌های HD، هگزامتین ترماین (HMT)

مقدمه

بسی‌ترین نیز برخی سلول‌های ریوی موش‌های صحرایی را می‌تواند سلول‌هایی که عموماً سولفور موستارد و یا گاز موستارد نامیده می‌شود. در جنگ جهانی اول و نیز اخیراً به‌اروا هوادار HD توسط عراق عليه ایران و نیز وضعیت قدره‌های عراقی به‌کار رفته [1-2]. این ماده یک آلیکلیک تند به‌سیر قهوه‌ای بوده که در اثر تماس با پوست انسان ایجاد ازدهی یافته است. همچنین با سلول‌های HD آزمایشگاهی مدل ازدهی بیش از دیلی آزادشدن پوست را باعث می‌کند.

پس‌از بی‌کورپورتی‌های تهیه‌رای شیمیایی و اندام‌های (وابسته انسان در و ایزدم) می‌گردید [2]. HD

با گروه‌های نکتونیلی در سلول به‌خوبی DNA برگشته‌ای‌ها اتصال کولان می‌یابد. این اتصال در بین رشته‌ها و

نیز در سراسر یک رشته ممکن است ایجاد گردد که سبب می‌باشد در ناحیه میتوان مهار می‌باشد. تحلیل موثری NAD، مهار گلوکوزی و نیازمندی مرگ سلولی

می‌گردد. مرگ سلولی ممکن است مستقیماً با واقعیت

انرژی‌های مختلف از جمله سیستم پرورش اکسیدان ایجاد گردد [2].

پیش‌تر درمانی و محفظت، یکی از ارگان‌ها از جمله پوست و سیستم تنفسی با نکتونیلی ممکن است تحریک ناشی از تسام با حذف را تا حدودی منفی نماید. در این زمینه موضوع‌هایی با

استرتی‌های سیستم و نکتونیلی اثربخشی شده است

[3-4]. ترکیبات دارای گروه‌های نکتونیلی ان و نکتونیلی و مثبت

آن نظر کاملاً لغاتی استری‌های سیستمی با محفظت در سیستم‌های انسان در مقابل HD

شده‌اند. [2، 5 و 6]. استری‌های HD
نتایج
اثر روزهای مختلف BD بر سلول‌های HFF2
اثر مصرف خردل بر سلول‌های HFF2 در دوزهای بالاتر از 30 و 60 میکرومولار مشاهده گردید. با افزایش غلظت HD اثر تغذیه به شدت افزایش یافت. با غلظت 100 میکرومولار پس از 15 دقیقه و غلظت 200 میکرومولار پس از 5 دقیقه باعث مرگ ۱۸۰ تقریباً ۵ درصد از سلول‌های شده است (LC۰۵). لذا غلظت LC۰۵ بیش‌یاً ۱۵ دقیقه به مغنون دوز مناسب (LC۰۵) جهت آزمایش‌های بعدی در نظر گرفته شد (شکل ۱).

شکل ۱: اثر غلظت‌های مختلف سلول‌های BD بر سلول‌های HFF2 در زمان‌های مختلف به موجب مرگ درصد و نسبت به مرگ درصد می‌باشد.

شکل ۲: اثر غلظت‌های مختلف HD بر سلول‌های HFF2 در زمان‌های مختلف به موجب مرگ درصد و نسبت به مرگ درصد می‌باشد.

اثر غلظت‌های مختلف HD بر سلول‌های HFF2 در مقابل اثرات HMT به تنهایی در غلظت‌های ۱۰ و ۱۵ میلی‌میلی‌مولار هیچ کهونه اثر می‌دارد. اثر سلول‌های HFF2 در زمان‌های مختلف به موجب مرگ درصد و نسبت به مرگ درصد می‌باشد.

اثر محغول‌سازی HMT بر سلول‌های HFF2 در برابر HMT به تنهایی در غلظت‌های ۱۵ و ۱۰ میلی‌میلی‌مولار هیچ کهونه اثر می‌دارد. اثر سلول‌های HFF2 در زمان‌های مختلف به موجب مرگ درصد و نسبت به مرگ درصد می‌باشد.

اثر محغول‌سازی HMT بر سلول‌های HFF2 در برابر HMT به تنهایی در غلظت‌های ۱۵ و ۱۰ میلی‌میلی‌مولار هیچ کهونه اثر می‌دارد. اثر سلول‌های HFF2 در زمان‌های مختلف به موجب مرگ درصد و نسبت به مرگ درصد می‌باشد.

اثر محغول‌سازی HMT بر سلول‌های HFF2 در برابر HMT به تنهایی در غلظت‌های ۱۵ و ۱۰ میلی‌میلی‌مولار هیچ کهونه اثر می‌دارد. اثر سلول‌های HFF2 در زمان‌های مختلف به موجب مرگ درصد و نسبت به مرگ درصد می‌باشد.

اثر محغول‌سازی HMT بر سلول‌های HFF2 در برابر HMT به تنهایی در غلظت‌های ۱۵ و ۱۰ میلی‌میلی‌مولار هیچ کهونه اثر می‌دارد. اثر سلول‌های HFF2 در زمان‌های مختلف به موجب مرگ درصد و نسبت به مرگ درصد می‌باشد.

اثر محغول‌سازی HMT بر سلول‌های HFF2 در برابر HMT به تنهایی در غلظت‌های ۱۵ و ۱۰ میلی‌میلی‌مولار هیچ کهونه اثر می‌دارد. اثر سلول‌های HFF2 در زمان‌های مختلف به موجب مرگ درصد و نسبت به مرگ درصد می‌باشد.
بحث

مطالعه با سیلوهای HF2FF نشان داد این سیلوهای همبستگی انحرافات HD و نیز بررسی کارایی داروی مکمل و اثرات درمانی احتیاطی آنها بر عوارض HD مدلی به سیلوهای مکمل می‌باشد. از سیلوهای فقح می‌توان از مطالعات درون تری جهت ارزیابی اثرات مفید و نیز اثرات احتیاطی مضر و سمی داروها بر سیلوهای قلبی‌پلاستیکی پوست استفاده نمود. تکثیر سریع، آسانی، می‌تواند و در دسترس بودن احتیال دخرب سیلوهای ان حریم، این اثرات مفید و نیز اثرات احتیاطی ضروری و مهم داروی همبستگی HD را در مقایسه با کنترل سیلوهای بی‌پوست، از مزایای این مدل می‌باشد.

در این تحقیق غلظت‌های مختلف سیلوهای HD به‌منظور اثرات محافل‌تیک ترکیبات از جمله LC50 مورد استفاده قرار گرفت. برای سریع انتقال HD نشان داد که این ماده بکی از سه‌وی‌سیر آلت‌برده و پیونده در دوره‌های بالاتر از ۲۰ میکرومولر نظر کمتر از ۵ دقیقه اثرات محبب و کشنده بر سیلوهای ایجاد می‌نماید. این اثر کاملاً مناسب به غلظت بوده و با آن نسبت مستقیم دارد. لیکن بیشترین اثر را در حداکثر زمان (۵ دقیقه) ایجاد نموده و پس از آن میزان نتیجه‌گیری سیلوهای زنده کمتر می‌باشد. به‌عنوان مثال با دور ۱۰۰۰ میکرومولر در زمان صرف تا ۵ دقیقه میزان کاهش میزان ۵ تا ۱۵ دقیقه این کاهش حدود ۵ درصد می‌باشد. لذا اثر میگرای سیلوهای HD در حداکثر زمان ممکن ایجاد می‌گردد. در میزان‌های طولانی از ۱۵ دقیقه تغییر میزان سیلوهای زنده به‌دست‌آمده کمتر از زمان اولیه است. با بیان تغییرات شدن نسبت اثر HD در میزان‌های ۶۰-۱۵ دقیقه و گزارش قابل در این خصوص [۳] میزان سیلوهای زنده تا ساعت یک از آن‌ها دستیابی نمود. یک اکثر از ۱۲ دقیقه اثر می‌نماید. در کنار این سیلوهای زنده‌تر در کاهش تعداد سیلوهای زنده مشاهده نشده است. اثر قطر فیلر دادل بر چندین محل اثر در سیلوهای باشد. برای افزایش غلظت HD فقط زمان بروز اثرات سیلیولوژیکی باعث کاهش پایین‌تر است.

نتایج نشان داد که غلظت ۸۰ میکرومولار برای ارزیابی کارایی و اثرات محافل‌تیک داروها و موارد ضاک‌سیابی اثرات

(شکل ۳). با روش اداره‌گیری NR میزان سیلوهای زنده از ۵۰/۰۳ در حضور HD به نهایی (۸۰/۵/۰۰۱) p می‌باشد.

مصرف هضم‌های HD و HD در مخاطب‌کننده سیلوهای HMT نشان داده که از نظر آماری معنادار (۹/۰۰۱) p می‌باشد.

سنجدان ۱۲۵-۱۸۰ هیچ‌گاه که تغییر معنی‌داری در افراد میزان سیلوهای زنده ایجاد نموده و نتهای حداکثر ۵ درصد افراد در میزان سیلوهای زنده مشاهده گردید. مطالعات میکروسکوپی نشان داد سیلوهای زنده از آن‌ها با کمک یک کدگیر جدا، چرودی، چه تکوز شده‌اند.

شکل ۲ اثر محافل‌تین هگزامتیک تربیمین بر ذرات HD، سیلوهای زنده با استفاده از R C1-گروه فریم‌نیخته (NR) (۹/۰۰۱) معنادار. قبل از (HMT+postHMT) HD به‌کار درده است. داده‌ها با روش ستاره‌گیری به دست آمده است. تعداد نمونه در هر گروه حداقل ۲۴ ۴ نتیجه به معنادار است.

(شکل ۴) داده‌ها با روش آماری و درصدی حاصل نمودار داده‌های میزان چسب‌پذیری خود نشان می‌دهد ۴۰/۰۰۱ p می‌باشد.

لدای نتایج فوق نشان داده شده چنین هر دو مصرف قبل و یا هپاتیت با اثر محافل‌تین برجسته‌ای بر سیلوهای HMT نشان داد، لیکن مصرف HMT قبل از محافل‌تین HF2FF بیشتری (۲۵ درصد در مقابل ۳۲-۳۳ درصد) بر سیلوهای فوق ایجاد می‌نماید.
نتایج، احتمالاً کاربرد HMT قبل از آلودگی با اثرات المجاتولیزی برای مصرف هرگونه آن کلودش و محیط HD از مشابه HMT که در اثر اثرات بیشتر از آلودگی می‌باشد.

افزایش دما HMT به پیشتر از میلی‌موئیر اثرات محیط HMT بیشتر از خارج موجودی HMT که به سایر اثرات مجاتولیزی ایجاد نموده است [3]. در این خصوص دو احتمال وجود دارد. 1- شاید HMT موجود در هنگام آلودگی HD با یک نکاتی چون عضوی و پیوند سالمقایی اجرا شده توسط HD سریع و قابل درک و انتظار HD، و اکتشاد را باعث سلول، و اکتشاد داده و آن را با عضوی می‌نماید. امکان یک نتیجه کلی برای امکان وجود HD جادوی امری است.

مطالعات متعدد اثرات محیطی HMT در مدل‌های سلولی به عنوان گلوبوت را می‌شناسد. HMT می‌تواند اثرات محیطی (SCK14) (رد سلولی کراتینوسیت انسانی) تا 23 ساعت در مقابل غلظت 10 میکرومولار شده است. همچنین سلول‌های عمقی ریه شامل رده‌های A549 تحت اثرات محیطی HMT مقاومت در موارد اثرات مخرب HD می‌شناسد.

مطالعات می‌بیند اثرات محیطی HMT با همراه گلوبوت چنین اسابیس سلول‌های (SCK14) (رد سلولی کراتینوسیت انسانی) تا 23 ساعت در مقابل غلظت 10 میکرومولار شده است. در اثرات محیطی HMT مقاومت در موارد اثرات مخرب HD می‌شناسد.

برای افراد های HD این ماه در داخل سلول و کاهش میزان HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD ریه یا میزان HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی سلول‌های HD موجود در سلول شده و اثرات مخرب و صدمه سلولی Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی SCK14 (رد سلولی کراتینوسیت انسانی) تا 23 ساعت در مقابل غلظت 10 میکرومولار شده است. همچنین سلول‌های عمقی ریه شامل رده‌های A549 تحت اثرات محیطی HMT مقاومت در موارد اثرات مخرب HD می‌شناسند.

برای افراد های HD این ماه در داخل سلول و کاهش میزان HD موجود در سلول شده و اثرات مخرب و صدمه سلولی را در بر. سلول‌های Rie موش صحرایی کاهش داده. وی در وضعیت بعیضه اثرات محیطی SCK14 (رد سلولی کراتینوسیت انسانی) تا 23 ساعت در مقابل غلظت 10 میکرومولار شده است. همچنین سلول‌های عمقی ریه شامل رده‌های A549 تحت اثرات محیطی HMT مقاومت در موارد اثرات مخرب HD می‌شناسند.
بدین روش یک مدل معادنی ساخته گردیده و در طی آزمایشات، از نگاه بیشترین اتصال آن به مولکول گوانین در ساختار DNA احتمالاً همکاری می‌کند. سپس در عدم شناسایی اثرهای همکاری تأثیرات مختلفی به می‌گردد که موجب نیاز به مراتبی قرار گرفته و در مراحل بعدی کار مورد ارزیابی قرار خواهد گرفت.

تشکر و قدردانی

این حمایت مالی معاونت یزوهجش دانشگاه علوم پزشکی به همراه گروه تحقیقی و مرکز تحقیقات آسیا‌های پیشین انجام گرفته است که بیش از زحمات همکاران گرامی در ارائه مطالعات مورد این تحقیق و تشویق به عمل می‌آید.

منابع

2- Lindsay CD, Hambrook JL. Disopropyl glutathione ester protects A549 cells from the cytotoxic effects of sulphur mustard. Human & Exp Toxicol 1998;17:606-12.