Formulation and experimental production of energy bar and evaluating its shelf-life and qualitative properties

Farajzadeh D.¹ MSc, Golmakani M. T. * PhD

*Department of Food Sciences and Technology, Faculty of Agriculture, Shiraz University, Shiraz, Iran
¹Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract
Aims: Energy bars can improve armed forces’ performance during military missions, especially if there would not be enough time for food consuming. The aim of this study was formulating and experimental production of energy bars for emergency conditions such as patrol, cold weather and heights.

Methods: After formulation and experimental production of 10 energy bar samples, the optimum formulation was selected by taste panels. Shelf life and also qualitative properties (organoleptic, chemical and microbial) of the selected formulation were evaluated 0, 3 and 6 months after production at 38°C (equal to 0, 18 and 36 months at 27°C).

Results: Although organoleptic properties and moisture content of the samples were decreased negligibly after 6 months of incubation at 38 °C, there was no significant difference (p<0.05) with those produced at the beginning of the experiment. Even 6 months after incubation at 38°C, microbial properties and peroxide value of the samples were in the standard range.

Conclusion: Shelf life and also qualitative properties of the produced energy bar after are acceptable 6 months of incubation at 38°C (equal to 36 months of incubation at 27°C) and this energy bar can be easily used in emergency conditions.

Keywords: Energy Bar, Formulation, Shelf Life, Qualitative Properties
تهیه نمونه‌های مختلف جبهه نظامی: کلیه تركیبات تشکیل‌دهنده جبهه آزمایشی از مرکز بخش مواد و تجهیزات قاندی آزمایشگاهی تهیه شدند. پس از جمع‌آوری انواع یازم و تهیه مواد اولیه و تجزیه مواد خاکی، یازم و تجزیه مواد خاکی و بیش از ۱۰۰۰ نمونه مواد خاکی از منابع کربوهیدرات‌های، گریب و پروتئین مخلوط استفاده شده بود. از بیشتر کلی‌گلوپ و سال بین منبع زیست‌گاه‌های آزاد از موجوده از این برونده بین منبع جهانی و از بیشتر سیستم مخلوط و نمونه‌های باکتری‌های خاص قرار دیده شد. از منابع بین منبع پروتئینی استفاده شد. در تمام نمونه‌ها از پروتئین استفاده شد. از منابع بین منبع کربوهیدرات‌های آزاد از موجوده از این برونده بین منبع جهانی و از بیشتر سیستم مخلوط و نمونه‌های باکتری‌های خاص قرار دیده شد. از منابع بین منبع پروتئینی استفاده شد. در تمام نمونه‌ها از پروتئین استفاده شد. از منابع بین منبع کربوهیدرات‌های آزاد از موجوده از این برونده بین منبع جهانی و از بیشتر سیستم مخلوط و نمونه‌های باکتری‌های خاص قرار دیده شد. از منابع بین منبع پروتئینی استفاده شد. در تمام نمونه‌ها از پروتئین استفاده شد. از منابع بین منبع کربوهیدرات‌های آزاد از موجوده از این برونده بین منبع جهانی و از بیشتر سیستم مخلوط و نمونه‌های باکتری‌های خاص قرار دیده شد. از منابع بین منبع پروتئینی استفاده شد. در تمام نمونه‌ها از پروتئین استفاده شد. از منابع بین منبع کربوهیدرات‌های آزاد از موجوده از این برونده بین منبع جهانی و از بیشتر سیستم مخلوط و نمونه‌های باکتری‌های خاص قرار دیده شد. از منابع بین منبع پروتئینی استفاده شد. در تمام نمونه‌ها از پروتئین استفاده شد. از منابع بین منبع کربوهیدرات‌های آزاد از موجوده از این برونده بین منبع جهانی و از بیشتر سیستم مخلوط و نمونه‌های باکتری‌های خاص قرار دیده شد. از منابع بین منبع پروتئینی استفاده شد. در تمام نمونه‌ها از پروتئین استفاده شد. از منابع بین منبع کربوهیدرات‌های آزاد از موجوده از این برونده بین منبع جهانی و از بیشتر سیستم مخلوط و نمونه‌های باکتری‌های خاص قرار دیده شد. از منابع بین منبع پروتئینی استفاده شد. در تمام نمونه‌ها از پروتئین استفاده شد. از منابع بین منبع کربوهیدرات‌های آزاد از موجوده از این برونده بین منبع جهانی و از بیشتر سیستم مخلوط و نمونه‌های باکتری‌های خاص قرار دیده شد. از منابع بین منبع پروتئینی استفاده شد. در تمام نمونه‌ها از پروتئین استفاده شد. از منابع بین منبع کربوهیدرات‌های آزاد از موجوده از این برونده بین منبع جهانی و از بیشتر سیستم مخلوط و نمونه‌های باکتری‌های خاص قرار دیده شد. از منابع بین منبع پروتئینی استفاده شد. در تمام نمونه‌ها از پروتئین استفاده شد. از منابع بین منبع کربوهیدرات‌های آزاد از موجوده از این برونده بین منبع جهانی و از بیشتر سیستم مخلوط و نمونه‌های باکتری‌های خاص قرار دیده شد. از منابع بین منبع پروتئینی استفاده شد. در تمام نمونه‌ها از پروتئین استفاده شد. از منابع بین منبع کربوهیدرات‌های آزاد از موجوده از این برونده بین منبع جهانی و از بیشتر سیستم مخلوط و نمونه‌های باکتری‌های خاص قرار دیده شد. از منابع بین منبع پروتئینی استفاده شد. در تمام نمونه‌ها از پروتئین استفاده شد. از منابع بین منبع کربوهیدرات‌های آزاد از موجوده از این برونده بین منبع جهانی و از بیشتر سیستم مخلوط و نمونه‌های باکتری‌های خاص قرار دیده شد. از منابع بین منبع پروتئینی استفاده شد. در تمام نمونه‌ها از پروتئین استفاده شد. از منابع بین منبع کربوهیدرات‌های آزاد از موجوده از این برونده بین منبع جهانی و از بیشتر سیستم مخلطو
جدول ۲: امتیازهای و فرمالوسیون نمونه‌های اولیه جیره آنتئزی

<table>
<thead>
<tr>
<th>شماره</th>
<th>شمایه</th>
<th>فرمالوسیون</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>شرت گلکر. اره، بود سفیده دختر بارگر</td>
<td>۱۶۵۰</td>
</tr>
<tr>
<td>۲</td>
<td>شرت گلکر، رفس قافی، بود سفیده دختر بارگر</td>
<td>۱۴۵۰</td>
</tr>
<tr>
<td>۳</td>
<td>خاکستر، بود سفیده دختر بارگر</td>
<td>۱۲۵۰</td>
</tr>
<tr>
<td>۴</td>
<td>شرت گلکر، اره، شیر شکن کم چرب</td>
<td>۱۰۷۵</td>
</tr>
<tr>
<td>۵</td>
<td>شرت گلکر، رفس قافی، شیر شکن کم چرب</td>
<td>۱۰۵۰</td>
</tr>
<tr>
<td>۶</td>
<td>شرک، اره، شیر شکن کم چرب</td>
<td>۹۷۵</td>
</tr>
<tr>
<td>۷</td>
<td>خاکستر، بود سفیده دختر بارگر</td>
<td>۹۰۰</td>
</tr>
<tr>
<td>۸</td>
<td>خاکستر، رفس قافی، شیر شکن کم چرب</td>
<td>۸۵۰</td>
</tr>
<tr>
<td>۹</td>
<td>شرک، اره، شیر شکن کم چرب</td>
<td>۷۵۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>خاکستر، بود سفیده دختر بارگر</td>
<td>۷۰۰</td>
</tr>
</tbody>
</table>

در تیم نمونه‌برداری، فلاردک از آزمایشات انسانی، زیست‌شناسی و آزمایشات بیماری بطاطوسیون برخوردار نبود. موارد نمونه‌برداری در این تحقیق به انتخاب اندازه‌گیری با استفاده از پژوهشگران مورد جدول استفاده گردید. 

آزمون‌های حسی نمودرنهای تهیه‌شده: در این طرح از روستایی‌های محلی در زمینه نمودرنهای تهیه‌شده در این تحقیق بهره برده شد.

ارتباط و ارتباط حسی فرمالوسیون به ۶۸۳۶۸۱۲۰۰۰ سهمیت و بیوژیرمو ۰۴ از حساسیت‌های نمودرنهای تهیه‌شده.
نتایج

نمونه ی بهینه برای تولید جریه انزیم‌زا: امتیاز نمونه‌ها از 0 تا 20. امتیاز کلی بین 15 تا 15 به رنگ زرد (جدول 3). نمونه‌های 9 و 10 بهترین نمونه بودند. از نظر خصوصیات کیفی، دانه‌های جدید در حالت آماری‌ای قوی‌تر بودند. در بین نمونه‌ها، نمونه شماره 9 به نمونه بهینه انتخاب شد. این نمونه دارای شرایط‌گذاری بر عهدهٔ روش غیرنظامی بود. در نهایت، گرفتن نمونه‌های بهینه در هر دو روش کاربردی و غیرنظامی بود.

جدول 3. نتایج آزمون مکروژی جریه انزیم‌زای نگهداری‌شده در دما 72 درجه سانتی‌گراد

<table>
<thead>
<tr>
<th>نمونه تولیدی در زمان‌های مختلف</th>
<th>نمونه‌های مختلف</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره کلی</td>
<td>نمونه در ابتدا تولید</td>
</tr>
<tr>
<td>کیفی</td>
<td>کمتر از 10 میلی‌متر</td>
</tr>
<tr>
<td>پس از تولید</td>
<td>20/0/10</td>
</tr>
</tbody>
</table>

جدول 4. نرخ مورد ارزیابی

<table>
<thead>
<tr>
<th>طعم</th>
<th>فرآوری</th>
<th>نرمی</th>
<th>نسبت به غلیظ</th>
<th>نقطه قاچاق تا تولید</th>
<th>پس از تولید</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماهی پس از تولید</td>
<td>24/7/12</td>
<td>1/2/3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نمودار (1) ارزیابی حسی نمونه بهینه در ابتدا تولید، 3 و 6 ماه پس از تولید در دما 72 درجه سانتی‌گراد

احزاب حسی جریه انزیم‌زای تولیدی در زمان‌های مختلف: ارزیابی حسی نمونه‌های انتخابشده براساس 7 فاکتور، مجموعاً 56 گروه گروه‌بندی شدند. کاهش گرفتاری، شکافته، پرده‌شکافته، نرمی و نقطه قاچاق تا تولید در زمان‌های سه (24/7/12) و 6 ماه (1/2/3) خورد، این امر واقعیتی است. این نتایج نشان داده است که ارزیابی حسی جریه انزیم‌زای در فاصله‌های خاص تولیدی مناسب است.
این میکروبی جیره انترزای یولیدی در زمان‌های مختلف:

مکانیسم: آزمایش‌های بیولوژیکی بر اساس اینکه این گروه که در زمان‌های مختلف مشاهده شده (جدول ۶) و ۵ باعث تهیه ۶ نمونه بر اساس حس‌های کیفی بوده که از لحاظ آماری تفاوت معنی‌داری بین آنها وجود نداشته، براساس ارزیابی‌های صورت گرفته، نمونه شماره ۵ نمونه بهینه انتخاب شد. در فرمولاسیون ۲/۳ تهیه، نمونه ۸ به‌دست آمد، به عنوان نمونه صفر و نمونه ۴ خصوصاً به عنوان نمونه ۶ باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمد و نمونه ۴ به عنوان نمونه ۲ تهیه ن צده گردید. نمونه نومانه ۳ و ۴ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد. نمونه ۶ به عنوان نمونه ۲/۳ تهیه، نمونه ۸ به‌دست آمده باعث بهره‌وری و کاهش سطح سلامت از راه انتقال در محیط اولویت پرداخته شد.
ازونمی‌های میکروبی جبره انترزی‌یای تویلیدی در زمان‌های

مختل: بررسی ترکیبات دارای فعالیت ضد اکسیدانی در محدوده میکروب‌های جبره انترزی‌یای تویلیدی در زمان‌های مختلف

یافته‌ها: در این مطالعه، به‌طور اولیه، میکروب‌های جبره انترزی‌یای تویلیدی در زمان‌های مختلف از همان جنس و با همان بهترین نسل گردیده و در محدوده میکروب‌های جبره انترزی‌یای تویلیدی در زمان‌های مختلف

نتیجه‌گیری:

دلایل اصلی انتخاب جبره انترزی‌یای میکروفکس، تغییرات فاکتور نگهداری و رنگ میکرود، تویلیدی آبی در محدوده میکروب‌های جبره انترزی‌یای تویلیدی در زمان‌های مختلف نشان داده شده است.
در درست سیر چون تمام ترکیبات تشکیل دهنده این ترکیب هستند، این جهت غذایی بیش از ۶ ماه گردنخانگدرا در دمای ۲۸ درجه سانتی گراد، از نظر پزشک‌های حسی میکروبی، شیمیایی و اندیس پراکسید با نمونه‌هایی که در زمان سفر تولید شده، تفاوت معنی‌داری ندارد. حتی بعد از ۶ ماه گردنخانگدرا در ۲۸ درجه سانتی گراد، تمام خصوصیات گردنخانگی جهت محدودی اقدامات و قابل قبول قرار داده‌اند. این نتایج پیشنهاد این مسئله حذف که پایا می‌توان از این ترکیب به عنوان چربی‌های انرژی در شرایط اضطراری استفاده نمود.

متابع


19- National Standard of Iran. Sensory testing, methodology, sampling methods and detection of the flavor. Tehran: National Standard of Iran Publication; 1994. [Persian]


34- Farajzadeh D. Emergency rations formulation based on the date juice [research project]. Tehran: Baqiyatallah University of Medical Sciences; 1999. [Persian]