Assessment of the risk of occupational exposure to extremely low frequency electromagnetic fields

Ghotbi Ravandi M. R. 1 PhD, Monazam M. R. 2 PhD, Haghdoust A. A. 1 PhD, Barsam T. * BSc, Akbari H. * MSc, Akbari H. 3 BSc

1Faculty of Health, Kerman University of Medical Sciences, Kerman, Iran
2Faculty of Health, Kerman University of Medical Sciences, Kerman, Iran
3Faculty of Health, Tehran University of Medical Sciences, Tehran, Iran

Health & Nutrition Research Center, Bagyatalah University of Medical Sciences, Tehran, Iran

Abstract

Aims: Extremely low-frequency electromagnetic fields are identical to the spectrum of human brainwaves and therefore, have more effect on function. Power substation operators are more exposed to these waves compared to other people. The purpose of this study was to assess the risk of power substation workers’ occupational exposure to extremely low-frequency electromagnetic fields.

Methods: This cross-sectional descriptive study was performed on 67 power substation operators of Kerman who were selected by accessible sampling method in 2010. The electric field intensity and magnetic flux density were measured in different parts of the substations and the amount of occupational exposure of each operator was estimated using the mean intensity of electric field and magnetic flux density in a work shift. Data was analyzed by descriptive statistical methods and one-way variance analysis using SPSS 18 software.

Results: Occupational exposure to extremely low-frequency electromagnetic fields was mostly related to 400kv substations and the lowest exposure was related to 132kv substations. Minimum and maximum ranges of the magnetic flux density and electric field intensity varied from 0.11 to 60.8mG and from 0.0008 to 0.13kv/m in the interior equipment and from 0.01 to 790mG and from 0.0008 to 110kv/m in the outdoor equipment.

Conclusion: The mean exposure time of operators in a work shift in various substations is lower than standard occupational permissible limits, except for some parts in the outdoor equipment which may have resulted from their proximity to transformers’ earth system.

Keywords: Occupational Exposure, Extremely Low-Frequency Electromagnetic Fields, Power Substation
مقدمه

میدان‌های الکتریکی و مغناطیسی با فرکانس‌های بیشتر از 30 هرتز و کمتر از 2000 هرتز کلیه کنی که در برابر الکترومغناطیسی با فرکانس‌های بی‌پهپایکم (ELF) (ICNIRP) (IARC) (WHO)

Downloaded from militarymedj.ir at 8:00 +0430 on Monday July 1st 2019
بار و توزیع از این تعداد میانگین صروعه شده‌ی ۷۷۸ میکروایکوست و ۱۸۷ میکروایکوست به‌صورت متوسط برابر یک و پنجمین فرکانسی است که مصرف میانگین ۵۳۶ کیلووات در پست ۱۳۲ کیلووات این ارگان‌های سیاست‌گذاران به دلیل افزایش زمان مصرف میانگین ۵۳۶ کیلووات در پست ۱۳۲ کیلووات این ارگان‌های سیاست‌گذاران به دلیل افزایش زمان

\[h_i \times B(t)_i \times \sum B_c = h_0 \times B_c \times B(t)_i \]

به طور قابل قبول‌تر از سمات این سیاست‌گذاران مشاهده می‌شود.

\[B_i = \sum B(t)_i \times h_i \]

که در آن \(B_i \) = میانگین پستی توزیع در پست و تقسیم‌بندی گروه‌های فرد در سیستم‌های فردی که از سمات این سیاست‌گذاران مشاهده می‌شود.

\[\text{ساعت و ۱۷ بود [۱۶]} \]

در نهایت نتایج این از کمپیوترهای با استاندارد مخصوص بین‌المللی مصرف میانگین ۷۷۸ میکروایکوست و ۱۸۷ میکروایکوست به‌صورت متوسط برابر یک و پنجمین فرکانسی است که مصرف میانگین ۵۳۶ کیلووات در پست ۱۳۲ کیلووات این ارگان‌های سیاست‌گذاران به دلیل افزایش زمان مصرف میانگین ۵۳۶ کیلووات در پست ۱۳۲ کیلووات این ارگان‌های سیاست‌گذاران به دلیل افزایش زمان

\[h_i \times B(t)_i \times \sum B_c = h_0 \times B_c \times B(t)_i \]

به طور قابل قبول‌تر از سمات این سیاست‌گذاران مشاهده می‌شود.

\[B_i = \sum B(t)_i \times h_i \]

که در آن \(B_i \) = میانگین پستی توزیع در پست و تقسیم‌بندی گروه‌های فرد در سیستم‌های فردی که از سمات این سیاست‌گذاران مشاهده می‌شود.

\[\text{ساعت و ۱۷ بود [۱۶]} \]

در نهایت نتایج این از کمپیوترهای با استاندارد مخصوص بین‌المللی مصرف میانگین ۷۷۸ میکروایکوست و ۱۸۷ میکروایکوست به‌صورت متوسط برابر یک و پنجمین فرکانسی است که مصرف میانگین ۵۳۶ کیلووات در پست ۱۳۲ کیلووات این ارگان‌ها
تکنیک

نتایج حاصل از اندازه‌گیری شدت میدان الکتریکی و شلیک مربوط به سه سطح‌های پشت تخت ۱۲ و ۲۴ ساعته در جدول ۲ نشان داده شده است که شدت میدان الکتریکی شلیک مربوط به سه سطح‌های پشت به پست ۱۲۴ کیویلوولت بین سه سطح‌های پشت و کمرنگین نسبت به سه سطح‌های پشت و کمرنگین بهبود می‌یابد.

جدول ۲
<table>
<thead>
<tr>
<th>میکرووات (mG) و شدت میدان الکتریکی (KV/m)</th>
<th>میکرووات (mG) و شدت میدان الکتریکی (KV/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شدت میدان الکتریکی متوسط</td>
<td>شدت میدان الکتریکی متوسط</td>
</tr>
<tr>
<td>در پشت</td>
<td>در پشت</td>
</tr>
<tr>
<td>۱۲۴ کیویلوولت</td>
<td>۲۴۴ کیویلوولت</td>
</tr>
<tr>
<td>۳۵۱ کیویلوولت</td>
<td>۳۷۱ کیویلوولت</td>
</tr>
<tr>
<td>۳۴۴ کیویلوولت</td>
<td>۳۲۵ کیویلوولت</td>
</tr>
</tbody>
</table>

جدول ۳
<table>
<thead>
<tr>
<th>میکرووات (mG) و شدت میدان الکتریکی (KV/m)</th>
<th>میکرووات (mG) و شدت میدان الکتریکی (KV/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>اشتهار</td>
<td>اشتهار</td>
</tr>
<tr>
<td>دهکی</td>
<td>دهکی</td>
</tr>
<tr>
<td>۱۲۴ کیویلوولت</td>
<td>۲۴۴ کیویلوولت</td>
</tr>
<tr>
<td>۳۵۱ کیویلوولت</td>
<td>۳۷۱ کیویلوولت</td>
</tr>
<tr>
<td>۳۴۴ کیویلوولت</td>
<td>۳۲۵ کیویلوولت</td>
</tr>
</tbody>
</table>

جدول ۴
<table>
<thead>
<tr>
<th>میکرووات (mG) و شدت میدان الکتریکی (KV/m)</th>
<th>میکرووات (mG) و شدت میدان الکتریکی (KV/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پشت بهبودی</td>
<td>پشت بهبودی</td>
</tr>
<tr>
<td>میکرووات</td>
<td>میکرووات</td>
</tr>
<tr>
<td>۱۲۴ کیویلوولت</td>
<td>۲۴۴ کیویلوولت</td>
</tr>
<tr>
<td>۳۵۱ کیویلوولت</td>
<td>۳۷۱ کیویلوولت</td>
</tr>
<tr>
<td>۳۴۴ کیویلوولت</td>
<td>۳۲۵ کیویلوولت</td>
</tr>
</tbody>
</table>

براساس بررسی‌های انجام‌شده در کلیه سطح‌های پشت‌های ایرانی پیش‌بینی شده می‌باشد که سطح‌های پشت تخت ۱۲ و ۲۴ ساعته از نظر میکرووات و پشت شهابی بسیار بالاتر باشند. این مشاهدات نشان‌دهنده می‌باشد که پویاپلاستیک از نظر میکرووات و پشت شهابی بسیار بالاتر باشند.

مجوز طب نظامی

۱۳۹۰ دهه ۳۱ شماره ۲۳ یا به ۱۳۷۹ میلی‌گوس و
و جوک ندارد. به همین دلیل در این قسمت چگالی شار مغناطیسی و
شت میدان الکتریکی کمتر است. در این اتاق استراحت، بیشترین
میانگین چگالی شار مغناطیسی و شدت میدان الکتریکی مربوط به
پست شهاب با ۵/۸۱ میلی‌گوس و ۱/۰۴ کیلوولت بر متر و
کمترین مربوط به پست باغی با ۱/۶۳ میلی‌گوس و ۱/۰۴
کیلوولت بر متر است. از این نتایج استراحت پست شهاب,
خطو برخبور ویکن. به همین دلیل این قسمت دارای
بیشترین میانگین چگالی شار مغناطیسی و شدت میدان الکتریکی
است. در اتاق‌های بیشترین میانگین چگالی شار مغناطیسی و
شت میدان الکتریکی با پت فرض برای ویژگی‌های زیاد است و
پست شهاب، فضایی سبز نسبت به پست‌های ۲۳۰ دیگر بیشتر
است و به همین دلیل کمترین شدت میدان الکتریکی مربوط به
این پست است.

جدول ۵

<table>
<thead>
<tr>
<th>میانگین چگالی شار مغناطیسی (mG) و شدت میدان الکتریکی (KV/m) در استراحه ۱۳۲ کیلوولت</th>
<th>پست‌های باغی</th>
</tr>
</thead>
<tbody>
<tr>
<td>اتاق استراحت</td>
<td>مغناطیسی</td>
</tr>
<tr>
<td>پست شهاب</td>
<td>۲/۸۱</td>
</tr>
<tr>
<td>پست کرمان ۱</td>
<td>۲/۷۶</td>
</tr>
<tr>
<td>پست کالامباید</td>
<td>۲/۳۸</td>
</tr>
<tr>
<td>پست کرمان ۲</td>
<td>۲/۶۸</td>
</tr>
<tr>
<td>پست صنایع جنی مس</td>
<td>۲/۵۸</td>
</tr>
<tr>
<td>پست باغی ۱</td>
<td>۲/۵۳</td>
</tr>
<tr>
<td>پست صنایع استیمک</td>
<td>۲/۴۸</td>
</tr>
<tr>
<td>پست ماهان</td>
<td>۲/۴۷</td>
</tr>
<tr>
<td>پست سیرج</td>
<td>۲/۴۶</td>
</tr>
<tr>
<td>پست راین</td>
<td>۲/۴۵</td>
</tr>
<tr>
<td>پست زنگی‌باید</td>
<td>۲/۴۴</td>
</tr>
<tr>
<td>پست سیمان</td>
<td>۲/۴۳</td>
</tr>
</tbody>
</table>

پست بسیار با ۶۳ میلی‌گوس و پست راین با ۷۱۰/۰۰ کیلوولت بر
متر است. علت افزایش چگالی شار مغناطیسی در پست سیمان،
قراردادن این اتاق در فضای ویژگی‌های زیاد است و همچنین،
پست اتاق استراحت پست کمتر است و در پست کالامباید و صنایع جنی مس
پست کمتر است و در پست کامباید کمتر است. از این نتایج استراحت
پست‌های باغی

پیشینه میانگین چگالی شار مغناطیسی و شدت میدان الکتریکی
در اتاق فرمان ۱۳۲ کیلوولت به‌طور مربوط به پست
سیمان با ۷۱۰/۰۰ میلی‌گوس و پست کالامباید و صنایع جنی مس
با ۷۰۹/۰۰ کیلوولت بر متر و کمترین میانگین غیرضبط مربوط به

Ir J Military Medicine

Vol. 13, No. 3, Fall 2011

Downloaded from militarymedj.ir at 8:00 +0430 on Monday July 1st 2019
<table>
<thead>
<tr>
<th>نوع پست</th>
<th>تعداد</th>
<th>تعداد ادعاگیری‌ها</th>
<th>تعداد شماره‌گذاری‌ها</th>
<th>شماره‌گذاری‌ها</th>
<th>شماره‌گذاری‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>داخلی</td>
<td>372</td>
<td>123</td>
<td>61</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>خارجی</td>
<td>320</td>
<td>112</td>
<td>44</td>
<td>23</td>
<td>19</td>
</tr>
</tbody>
</table>

جدول

tableView

<table>
<thead>
<tr>
<th>نوع پست</th>
<th>تعداد</th>
<th>تعداد ادعاگیری‌ها</th>
<th>تعداد شماره‌گذاری‌ها</th>
<th>شماره‌گذاری‌ها</th>
<th>شماره‌گذاری‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>داخلی</td>
<td>372</td>
<td>123</td>
<td>61</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>خارجی</td>
<td>320</td>
<td>112</td>
<td>44</td>
<td>23</td>
<td>19</td>
</tr>
</tbody>
</table>

مدارک

<table>
<thead>
<tr>
<th>نوع پست</th>
<th>تعداد</th>
<th>تعداد ادعاگیری‌ها</th>
<th>تعداد شماره‌گذاری‌ها</th>
<th>شماره‌گذاری‌ها</th>
<th>شماره‌گذاری‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>داخلی</td>
<td>372</td>
<td>123</td>
<td>61</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>خارجی</td>
<td>320</td>
<td>112</td>
<td>44</td>
<td>23</td>
<td>19</td>
</tr>
</tbody>
</table>

مدارک

<table>
<thead>
<tr>
<th>نوع پست</th>
<th>تعداد</th>
<th>تعداد ادعاگیری‌ها</th>
<th>تعداد شماره‌گذاری‌ها</th>
<th>شماره‌گذاری‌ها</th>
<th>شماره‌گذاری‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>داخلی</td>
<td>372</td>
<td>123</td>
<td>61</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>خارجی</td>
<td>320</td>
<td>112</td>
<td>44</td>
<td>23</td>
<td>19</td>
</tr>
</tbody>
</table>

مدارک

<table>
<thead>
<tr>
<th>نوع پست</th>
<th>تعداد</th>
<th>تعداد ادعاگیری‌ها</th>
<th>تعداد شماره‌گذاری‌ها</th>
<th>شماره‌گذاری‌ها</th>
<th>شماره‌گذاری‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>داخلی</td>
<td>372</td>
<td>123</td>
<td>61</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>خارجی</td>
<td>320</td>
<td>112</td>
<td>44</td>
<td>23</td>
<td>19</td>
</tr>
</tbody>
</table>
4- Margallo VA. Extremely Low Frequency (ELF) magnetic field study assessment of two 100 MVA electric power substations in the Philippines. Asia Oceania; Congress of Medical Physics, 2009.
9- Sharifi M. Measurement of the magnetic fields of high voltage substations (230 KV) in Tehran (Iran) and study exposure effects to magnetic fields. Radiat Environ Biophys. 2011;46(1):69-76.
13- Institute of Electrical and Electronics Engineers (IEEE). IEEE standard procedures for measurement of power frequency electric and magnetic fields from AC power lines. Gujarat: IEEE Publication; 1994.
16- Paniagua JM. Exposure to extremely low frequency magnetic fields in an urban area. Radiat Environ Biophys. 2007;46(1):69-76.
19- American Conference of Governmental Industrial Hygienists. TLVs and BEIs based on the documentation of

