مطالعه منطقه HV1 از mtDNA چهت کاربرد در تشخیص هویت از طریق نسل مادری

مسعود مروتی*، و مهستی مدیری**

آدرس مکاتبه: *دانشگاه علوم پزشکی بقیه‌الله، پژوهشگاه طب رژیم - مرکز تحقیقات پیشگیری مولکولی - ایران

**اداره تشخیص هویت یوروپی انتخابی جمهوری اسلامی ایران

خلاصه

مقدمه: بررسی توالی DNA میوتکندریایی در منطقه سپار متنگ نشان می‌دهد که این منطقه می‌تواند به‌عنوان ابزار مؤثری در تعیین هویت مورد استفاده قرار گیرد. تعداد زیادی کپی‌ها مقلدا در برایار تحریک، کوئه، بودن طول زنوم در مقایسه با زنوم هویت و الگو وراثه‌دار باید درکیده این منطقه است. مدل mtDNA به‌عنوان جهشی بریزی در مواردی که بدون قدمی بودن یا تخریب شدن نمونه پیش‌جویی امکان بررسی زنوم هویت مقدور نیست، مفید واقع گردید.

مواد و روش کار: در این مطالعه تجربی، به بررسی پل مورفیسم‌های موجود در ناحیه سپار، ازHV1 مدل NA و DNA توالی جهشی (D-loop) جهت میتواند در سل مسولیت از 10 عناوین غیر وابسته (جمعه 2 و پنج‌شنبه) شده است.

نتایج: در این ناحیه در خاک‌های مورد برسی 22 محل نوکلئوتیدی پل مورفیسم‌های متغیر شده است. DNA پل مورفیسم‌های متغیر شده در منطقه مورد نظر در سه سل مسولیت از هر 10 عناوین کاملاً یکسان بودند. اما به‌طور متوسط در میان آفراد از خاک‌های متوفر حدود 2/3 نوکلئوتید اختلاف وجود داشت.

بحث: در بررسی نمونه‌های پیش‌جویی ناشناخته با هدف تشخیص هویت انتظار دریم این ناحیه میان آفراد با مشابه بکسان مادری تفاوتی وجود داشته ولي میان افراد غیر خوش‌شناس حداکثر حدود 2 نوکلئوتید اختلاف وجود داشته باشد. این روایت می‌تواند به‌ویژه در تشخیص هویت پیکرهای متانه‌سنجی‌های بعضاً مانند این سل مسولیتی مورد استفاده قرار گیرد.

واژه‌های کلیدی: DNA Mitoکندریایی، تشخیص هویت، ناحیه سپار، متغیر یک P-loop, P-pl مورفیسم

مقدمه

میوتکندری اندامکی سینتیپاسیمی است که در سینتیپاسیم همه سلول‌های پروکاریوتی فورزد. این اندازه‌ها انتخابی میتواند به‌عنوان DNA انرژی بایق سلول است. در ازای DNA حلقه اختصاصی و ستقل D-loop برای سلول سریع و هسته‌ای در طول 16569 جفت باز و 37 زن است که محصولاتی را در فرآیند سلفی‌پاسیس نکسیداتوکسیک به کن. به

حسب سن و نوع سلول، هر میوتکندری واحدهای یک یا چند مولکول mtDNA را به حالت مولکول (mtDNA) می‌تواند. mtDNA هم از پروکاریوت‌ها، گاهی است سیگنال و گوناین است و پایایی در میان از جهش‌های در برایار گروه‌ها دارد. mtDNA حاوی ناحیه سپار D-loop یا Displacement-loop متغیر (Hypervariable) به‌عنوان (Hypervariable) مورد استفاده قرار گیرد.
اعضا یک خانواده بهوجود آورده اما مقدار این تفاوت‌ها زیاد نیست. لذا از نظر تئوری mtDNA نمایندگان مادری اش یکسان بودند. از این رو، پیش از این در شناسایی استخوان‌های بسیار قدمتی سرکاهان گفته و نیاز داشت لیکن انتقال نیکلاس در روش استفاده شده است. از این‌جا که در این خصوص در کشور ما مطالعه‌ای جالب و نیزگربه و mtDNA تفاوت‌های احتمالی در توالی mtDNA غیرخورشیدوخانه ارتباط نگرفته‌اند. از این‌رو، سطح‌آمیختگی آن در تشخیص به‌صورت ما مورد مطالعه قرار گرفته است. در این مطالعه ناحیه بسیار متفاوت همان یک (HV1) از mtDNA را به سه ناحیه مادری از 10 خلاصه روابط واقعی مورد بررسی قرار داده و به مقایسه آن با رفرنس اندورس [2] و دگر مطالعات انجام شده در این زمینه در سایر کشورها درآمدی بوده‌اند ارزش کتابخانه در تشخیص این از این نتایج در کتاب مارک‌های برای STR تعبین هویت استفاده شد.

مطالعه کلکر
حدود 11،000 جفت باز

#1: نواحی HV1 و mtDNA در HV2 و HV1

مواد و روش کار
- در این تحقیق ناحیه HV1 از زنده میوتکندری در سه نس

- در این تحقیق ناحیه HV1 از زنده میوتکندری در سه نس
شکل ۲: نامه‌ای ایجاد شده ناحیه HV1 با مواد و سیکل حرارتی فوت‌ذکر

۵- میلیلتر خون از ورید محیطی گرفته و درون میکروتوبهای حاوی بی‌سیلی‌گرم EDTA، به همین ترتیب از ۸۰ خانواده انتخاب شده، از هر خانواده سه نسل مادی می‌باشد.

۳- متوالی انتخاب و نمونه‌گیری از ۲۰ نمونه مذکور صورت پذیرفت.

شکل ۳: نمونه‌های خون مذکور به همراه DNA mtDNA استاندارد فتل کلروفرم [۶] استخراج شده و سپس وجود آنها بر روی زل آگارز تایید گردید.

شکل ۴: نمودار وجود DNA در نمونه‌ها پس از استخراج به روش فتل کلروفرم

۴- با استفاده از منابع و اطلاعات موجود پیایی‌های مناسب برای قطعه مورد نظر این قطعه HV1 طراحی، انتخاب و تهیه گردید که سکانس آن‌ها به شرح ذیل می‌باشد:

F(5'-TTAATCTCCACCATAGGCAC-3')
R(5'-CTGAACTGGAACCAGATG-3')

۵- روش انتخاب قطعه HV1 اینی‌ها مایز شد. در نتیجه PCR با مواد و سیکل حرارتی زیر انجام شد:

Buffer 10X 2.5μl, dNTP 1 μl, primer R1 1 μl, primer F1 μl, Mgcl2 0.6 μl, Taq polymerase gold 0.3 μl, Sample DNA 2 μl, dH2O 16.6 μl و Total Volume 25 μl

۱- Initiation denaturation-3min-95°C
۲- Denaturation-1min-94°C, Annealing-1min-57°C, Extension-1min-72°C, × ۳۰ cycles
۳- Final Extension-10min-72°C

شکل ۱: نقطه‌ای ایجاد شده ناحیه HV1 با روش انتخاب قطعهHV1

شکل ۱: نقاط‌یک و دو

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده ناحیه HV1 با روش انتخاب قطعه HV1

شکل ۱: نقاط ایجاد شده N1 :حدثی ۷۷۸، شماره ۲(۱)}
جدول 1: تغییرات ایجاد شده در منطقه HVI در 10 خانواده غیرخوب‌شناختن بر حسب شماره‌های تولکتون‌بندی همه سال‌های مادری

<table>
<thead>
<tr>
<th>شماره مراجع</th>
<th>خانواده</th>
<th>نسل 1</th>
<th>نسل 2</th>
<th>نسل 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>9</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
</tr>
</tbody>
</table>

نتایج

1- مقایسه سکانس نمونه‌ها با سکانس مرجع اندروسن:
در زنوم میتوکندری قطعه HVI دارای طول حدود 550 جفت نیاز به باشور داشت. با مقایسه زمره‌های HVI از 10 خانواده مورد بررسی در آن مطالعه در سه نسل متوازن مادری این قطعه در هر خانواده در نقاط ذیل با سکانس مرجع منفیآت بود. این تفاوت‌ها در تمام خانواده‌ها در سایر نژاد‌ها، ساده و نه دختری یکسان بودند و موارد هتروولاسیک در آنها دیده نشد [26].

Family 1) T16017C, G16129A, C16223T, C16270T, G16391A
Family 2) C16067T, A16183G, T16311C, C16327A
Family 3) C16134T, T16356C
Family 4) A16119G
Family 5) T16126C, C16223T, C16344T
Family 6) A16309G, A16318T
Family 7) T16311C, T16224C
Family 8) C16069T, T16126C, C16193T, C16278T
Family 9) C16069T, T16126C, G16145A, C16222T, A16235G, C16261T, T16311C
Family 10) T16224C, T16311C

2- مقایسه نتایج:
در جدول 1 پلا مورفیسم‌هایایجاد شده در منطقه HVI در زنوم میتوکندری به دست آمده غیرخوب‌شناختن مورد مطالعه، بر حسب شماره تولکتون‌بندی و تغییرات حاصل در پاره‌ای آنی در سه نسل متوازن‌ماند یکسان داده شده است. بیشترین تغییرات مربوط به خانواده نمونه 9 است که وابست 7 تغییر پلا مورفیسم نسبت به سکانس اندروسن مشابه. سپس خانواده نمونه 1 قرار دارد که دارای 5 تغییر پلا مورفیسم مشابه کمترین میزان تغییرات مربوط به خانواده نمونه 4 بوده است که دارای یک پلا مورفیسم نسبت به سکانس اندروسن است.
بهشته نوکلئوتید تغییر یافته

شکل ۵: فراوانی نسیم تغییرات V1 در جمعیت مورد مطالعه HVI

این بررسی نشان می‌دهد که میانگین تفاوت نوکلئوتیدی در منطقه HVI در این ۱۰ خانواده ۲/۵ نوکلئوتید است. لذا در بررسی رابطه خوشه‌ای میان دو تعداد مجزا از طریق بررسی مناطق مختلف HVI چنانکه در منطقه سیاه رنگ نظریه خوشه‌ای پاسخی به نوکلئوتیدی متفاوت در این مناطق در آنها معنی گردیده است.

جدول ۲: مقایسه منطقه HVI در ۱۰ خانواده مورد مطالعه به صورت ۲ به ۲ و تغییرات نوکلئوتیدی محورهای در آنها

<table>
<thead>
<tr>
<th></th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵/۸</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
<td>۷</td>
<td>۸</td>
<td>۹</td>
<td>۱۰</td>
</tr>
<tr>
<td>۵/۷</td>
<td>۴</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
<td>۷</td>
<td>۸</td>
<td>۹</td>
</tr>
<tr>
<td>۳/۸</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
<td>۷</td>
<td>۸</td>
<td>۹</td>
<td>۱۰</td>
</tr>
<tr>
<td>۳/۷</td>
<td>۴</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
<td>۷</td>
<td>۸</td>
<td>۹</td>
</tr>
<tr>
<td>۲/۸</td>
<td>۵</td>
<td>۶</td>
<td>۷</td>
<td>۸</td>
<td>۹</td>
<td>۱۰</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
</tr>
<tr>
<td>۲/۷</td>
<td>۴</td>
<td>۳</td>
<td>۲</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
<td>۷</td>
</tr>
<tr>
<td>۱/۸</td>
<td>۸</td>
<td>۹</td>
<td>۱۰</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
<td>۷</td>
</tr>
<tr>
<td>۱/۷</td>
<td>۷</td>
<td>۸</td>
<td>۹</td>
<td>۱۰</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
</tr>
<tr>
<td>۰/۸</td>
<td>۶</td>
<td>۷</td>
<td>۸</td>
<td>۹</td>
<td>۱۰</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
</tr>
<tr>
<td>۰/۷</td>
<td>۵</td>
<td>۶</td>
<td>۷</td>
<td>۸</td>
<td>۹</td>
<td>۱۰</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
</tr>
</tbody>
</table>

بحث

میتوکندری‌ها در خارج از هسته به عنوان یکی از موتورهای کاندیدای وابسته به DNA خود درایم DNA است. هنگامی که یک DNA هسته‌ای در میان‌بندی DNA میتوکندری جدا شود، به‌صورت حلقه‌ای و سپس به‌صورت چند رشته‌ای mtDNA به‌صورت خلاصه‌ای است. ارث می‌رسد و به‌جهت انتقال تغییرات HVI، دسته‌بندی میتوکندری در هر فرد می‌کنند توالی میتوکندری این گروه مادری او می‌باشد. در میتوکندری این توالی تغییرات HVI در ۱۰۰۰ نمونه یافت گردیده است.

طبیعت (۱۲۴۸، شماره ۷)
منابع