مطالعه منطقه mtDNA از HV1 چیت کاربرد در تشخیص هویت

مقدمه

میتوکندریایی در منطقه بسیار متغیر نشان می‌دهد که این منطقه می‌تواند به‌عنوان ابزار مؤثری در تعيین هویت مورد استفاده قرار گیرد. تعداد زیادی کی‌ها مهاجرت یافته در برای تحقیق، که این بودن طول زنوم در مقایسه با زنوم هسته‌ای و الگو وراثت مادری بایستی گردیده است تا تالای mtDNA به‌عنوان به‌ویژه در مواردی که به‌دلیل قدمی بودن یا تخریب شدید مومیایی امکان بررسی زنوم هسته‌ای بی‌مفید، می‌فند واقع گردد.

مواد و روش کار:

در این مطالعه تجربی به بررسی پلی مورفیسم‌های موجود در ناحیه بسیار متغیر یک (1HV1) منطقه غرب رزم کننده D-loop در سه نسل مختلف مادری از 10 خانواده غیر واپسین (جمعه 300 نفر) برداشت شده است.

نتایج:

در این ناحیه در خانواده‌ها مورد بررسی 27 محل نوتولوئیدی پلی مورفیسم یافته شد. توالی و DNA پلی مورفیسم‌های یافته شده در منطقه مورد نظر در سه نسل مستقیم از هر خانواده کاملاً یکسان بودند. اما به‌طور متوسط در میان افراد از خانواده‌ها متغیری حدود 2/5 نوتولوئید اختلاف وجود داشت.

بحث:

در بررسی نمونه‌های پیژوهش ناشناخته با هدف تشخیص هویت از انتقال در این ناحیه میان افراد با مشاکس مادری تفاوتی وجود نداشت و نقش میان افراد غیر خوشبختن حدود 8 نوتولوئید اختلاف وجود داشت. این رویه می‌تواند به‌ویژه در تشخیص هویت پیکرهای متصرف شهروندی به‌عنوان یک استفاده قرار گیرد.

واژه‌های کلیدی: DNA میتوکندریایی، تشخیص هویت، ناحیه بسیار متغیر یک (1HV1), P-loop, D-loop, mtDNA

مقدمه

میتوکندریانanan اندامیکی سیتوپلاسمی است که در سیتوپلاسم همه سلول‌های بیوتکنسی هم و نیز در سلول‌های محلولی DNA انرژی برای سولو است. دارای DNA حلقوی اختصاصی و مستقل از هسته‌ای بطور طولانی 16569 زن و 37 زن است که محصولاتی را در فرآیند سفارش‌های اکسیداتیو کد می‌کند.

M.Sc.* و M.D. Ph.D. ** سعید مروتی

آدرس مکاتبه: * دانشگاه علوم پزشکی بقیه‌ای - گروه تحقیقات پیژوهی مولکولی - تهران - ایران

** اداره تشخیص هویت پژوهی انتظامی جمهوری اسلامی ایران

تاریخ اعلام وصول: 1388/11/24 تاریخ دریافت مقاله اصلاح شده: 1388/12/40
جایت کازپردر در تشخیص هپات مدل مادری mtDNA از HV1 مطالعه منطقه

- از هر یک از افراد انتخاب شده (مادر زرگ، مادر و نوزاد) دو میلی لیتر خون از ورید محلی گرفته و درون میکروتوبهای حاوی یک میلی گرم ریخته شد. به همین ترتیب از 10 خانواده انتخاب شده، از هر خانواده سه نسل مادری متوالی انتخاب و نمونه گیری از 30 نمونه مذکور صورت پذیرفت.

- 3 نابی عکس وجود DNA در نمونه ها پس از استخراج به روش فنل کلروفورم

- با استفاده از منابع و اطلاعات موجود برای هر هپات مدلHV1 قطعه 34 مولکول نظیر پیشنهادی مناسب برای قطعه مورد نظر یعنی قطعه HV1 طراحی، انتخاب و تهیه گردید که

\[F(5'-TTAACCTCCACCATTAGGC-3') \]

\[R(5'-CCTGAAAGGAAAAACGATG-3') \]

- روش تکثیر قطعه HV1 انتخاب شد در نتیجه PCR با مواد و سیکل حرارتی زیر انجام شد:

- Buffer 10X 2.5μl, dNTP 1 μl, primer R1 μl, primer F1 μl, Mgcl2 0.6 μl, Taq polymerase gold 0.3 μl, Sample DNA 2 μl, dH2O 16.6 μl و Total Volume 25 μl

- 1- Initiation denaturation-3min-95°C

- 2- Denaturation-1min-94°C, Annealing-1min-57°C, Extension-1min-72°C, ×30 cycles

- 3- Final Extension-10min-72°C

- سپس محصول PCR حاصل از قطعه HV1 از 30 نمونه مورد (Applied Biosystems) بررسی به روش BigDye ترمیناتور (377 عینیت) مدل ABI PRISM توالی گردید.

شکل 3: نکته تأیید شده DNA به روش PCR

شکل 4: نکته ایجاد شده ناحیه HV1 به مدت و سیکل حرارتی قطعه

شکل 5: نکته ایجاد قطعه HV1 از 30 نمونه شده به روش PCR

شکل 2: نکته برقراری قطعه HV1 از 30 نمونه مادری به روش PCR

شکل 1: نکته ایجاد شده ناحیه HV1 به مدت و سیکل حرارتی قطعه
نتایج

1- مقایسه سکاسه‌نامه‌ها با سکاسه مرجع اندروس:

در زنوم میتوکندری قطعه HVI دارای طول حدود ۵۵۰ جفت بزرگ می‌باشد. با مقایسه مناطق HVI از ۱۰ خانواده مورد بررسی در این مطالعه در سه نسل متواجدهای مادری این قطعه در هر خانواده در نقاط مختلف با سکاسه مرجع متفاوت بود. این تفاوت‌ها در تمام خانواده‌ها در مادربزرگ، مادر و نوه دختری یکسان بودند و موارد هتروپلاسمیک در این داده نشد [۸].

<table>
<thead>
<tr>
<th>نسل ۱</th>
<th>نسل ۲</th>
<th>نسل ۳</th>
<th>مرجع سکاسه‌نامه</th>
<th>شماره خانواده</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>۱۶۳۰۷</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>۱۶۱۴۹</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>۱۶۲۲۲</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>۱۶۲۷۰</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>۱۶۳۸۴</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>۱۶۰۶۷</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>۱۶۱۸۳</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>۱۶۳۱۱</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>۱۶۳۶۷</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>۱۶۵۱۳</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>۱۶۳۵۵</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>۱۶۱۱۸</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>۱۶۴۱۷</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>۱۶۴۳۳</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>۱۶۴۴۴</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>۱۶۳۰۹</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>A</td>
<td>۱۶۳۸۸</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>۱۶۲۴۴</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>۱۶۱۱۱</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>۱۶۰۸۹</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>۱۶۱۱۷</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>۱۶۱۴۳</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>۱۶۳۷۸</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>۱۶۵۹۹</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>۱۶۱۲۴</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>۱۶۱۵۵</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>۱۶۴۲۲</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>۱۶۴۲۵</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>۱۶۳۸۱</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>۱۶۴۱۱</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>۱۶۳۲۷</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>۱۶۳۱۱</td>
</tr>
</tbody>
</table>

Family 1) T16017C, G16129A, C16223T, C16270T, G16391A
Family 2) C16067T, A16183G, T16311C, C16327A
Family 3) C16134T, T16356C
Family 4) A16119G
Family 5) T16126C, C16223T, C16344T
Family 6) A16309G, A16318T
Family 7) T16311C, T16224C
Family 8) C16069T, T16126C, C16193T, C16278T
Family 9) C16069T, T16126C, G16145A, C16222T, A16235G, C16261T, T16311C
Family 10) T16224C, T16311C

2- مقایسه نتایج:

در جدول ۱ پلی‌مورفیسم‌های ایجاد شده در منطقه HVI در زنوم میتوکندری قطعه HVI از ۱۰ خانواده غیرمربوط به سکاسه گردید و تغییرات حاصل در پژوهش اثبات شد. پژوهشگران تغییرات مربوط به شماره خانواده شماره ۹ است که به این دلیل مورد نگهداری شد. سپس خانواده شماره ۱ قرار داد که دارای ۵ سوزر قبلاً مورفیسم می‌باشد. کمترین میزان تغییرات مربوط به خانواده شماره ۳ بوده است که به دلیل یک پلی‌مورفیسم نسبت به سکاسه اندروس است.
در شکل شماره ۵ بیشترین تقاضا جهت تشخیص هویت از طریق نسل مادری mtDNA جهت کاربرد در تشخیص هویت از طریق نقشه نسل مادری مطالعه منطقه ۱ HVI در کل جمعیت مورد مطالعه نشان داده است. این نمونه نشان می‌دهد که در جمعیت مورد مطالعه پلی‌مورفیسم دارای T16126C این بیشترین تقاضا بوده و در ۴۰ درصد افراد مورد مطالعه دیده شده است. بعد از این مورد بیشترین تقاضا مربوط به پلی‌مورفیسم T16126C است.

این بررسی نشان می‌دهد که میانگین تفاوت نوکلئوتیدی در منطقه HVI در ۱۰ خانواره ۵/۲ نوکلئوتید است. لذا در بررسی رابطه خوشاوندانی سیان دو تغییرات مجهول از طریق بررسی منطقه ۱ HVI جهت کمک به نمونه‌های گروه نظیر همکاری خوشاوندان با آن‌ها می‌توان انتظار داشت که حدود ۵/۲ نوکلئوتید تفاوت در سکس آن دو وجود داشته باشد.

در جدول ۲ تفاوت نوکلئوتیدی در منطقه HVI در ۱۰ خانواره مورد مطالعه به صورت ۲ به ۱ است. تغییرات ۲ تفاوت نوکلئوتیدی در منطقه HVI در ۱۰ خانواره مورد مطالعه به صورت ۲ به ۱ است.

جدول ۲: مقایسه منطقه HVI در ۱۰ خانواره مورد مطالعه به صورت ۲ به ۱.

منابع بافت نش. در این مطالعه منطقه 1 از زئوم میوتوندی
1 در 10 خانواده غیر خوش‌آهن ایرانی سود بررسی و مطالعه
قرار گرفت و همان طور که نتیجه می‌رود، آن تنوی نکلئوتیدی
در این سلول‌ها می‌توان نتیجه بررسی‌ها
توی آن تجویز گردید. در این مطالعه نخواهی هم می‌شود.
تاریخ سیال‌های DNA
به‌طور متوسط میان 6 در 10 خانواده مورد مطالعه غیر خوش‌آهن
در ناحیه HVI-2 5 تونژید تفاوت وجود دارد.

نتیجه گیری
از نتایج حاصل از این مطالعه می‌توان چنین استنتاج کرد که با
بررسی نخواهی انتحال دارای بطور متوسط حدود 2/5 تونژید
اختلاف میان 2 در غیر خوش‌آهن ایرانی وجود داشته باشد. بنابراین
به‌نظر می‌رسد که بررسی و تیمار تونژید منطقه از زئوم
میوتوندی جهت تعیین هویت در گروه‌های مختلف و حاصل
همیشه می‌باشد. به علت انتخاب تونژید در زمان بررسی
راسته خوش‌آهن چنین به‌طور مجهول مورد نظر غیر خوش‌آهن
باشد و حدود 5 تونژید تفاوت درمسطح HVI-2 آنها مشاهده
گردیده. در حالی که اگر تونژید مجهول خوش‌آهن باشد
انظریه به جز موارد نادر موسیقی و هتروبالاسمی
هنگونه تفاوتی در تونژیدهای این منطقه آنها مشاهده نگردید.

1- Roussel J and Marsiglio P. MtDNA polymorphisms: a study of 50
French Caucasian individuals and application to forensic casework.
2- Listz S, Weisser JI, Heizmann J and Pollak L. Location and
frequency of polymorphic positions in the mtDNA control region of
3- Pfeifer H, Steighner R, Fisher R, Mornstad H, Yoon CL and
Holland MM. MtDNA extraction and typing from isolated
existent samples in a Korean population. Int J Legal Med
4- Holland MM, Fisher DL, Mitchell LG, Rodriguez WC, Canik JJ,
Merrill CR et al. MtdNA sequence analysis of human skeletal
remains: Identification of remains from the Vietnam war. Journal of
5- Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson
AR, Drouin J et al. Sequence and organization of the human
6- Kochl S, Niederstetter H, Parson W. DNA extraction and
quantitation of forensic samples using the phenol-chloroform method
and real-time PCR. Methods Mol Biol 2005; 297:13-30
7- Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van
Dillen PM and van der Noordaa J. Rapid and simple method for
8- Behar DM, Hammer MF, Garrigan D, Villens R, Bonne-Tamir
B, Richards M et al. MtDNA evidence for a genetic bottleneck in the
early history of the Ashkenazi Jewish population. Eur J Hum
9- Marchington DR, Hartshorne GM, Barlow D and Poulton J.
Homoplastic tracts heteroplasm in mtDNA from tissues and
single oocytes: support for a genetic bottleneck. Am J Hum Genet
1997;60(2):408-16.
10- Holland MM and Parson TJ. Mitochondrial DNA sequences
analysis-validation and use for forensic casework. Forensic Sci Rev
1999;11:21-49.